【題目】點A、B均在由面積為1的相同小矩形組成的網(wǎng)格的格點上,建立平面直角坐標系如圖所示.若P是x軸上使得|PA﹣PB|的值最大的點,Q是y軸上使得QA+QB的值最小的點,則OPOQ=

【答案】5
【解析】解:連接AB并延長交x軸于點P,由三角形的三邊關(guān)系可知,點P即為x軸上使得|PA﹣PB|的值最大的點,
∵點B是2x2的正方形的對角線的交點,
∴點P即為AB延長線上的點,此時P(3,0)即OP=3;
作A點關(guān)于y軸的對稱點A′連接A′B交y軸于點Q,則A′B即為QA+QB的最小值,
∵A′(﹣1,2),B(2,1),
設(shè)過A′B的直線為:y=kx+b,則 ,
解得 ,
∴Q(0, ),即OQ= ,
∴OPOQ=3× =5.
所以答案是:5.

【考點精析】解答此題的關(guān)鍵在于理解三角形三邊關(guān)系的相關(guān)知識,掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一艘輪船在小島A的北偏東60°距小島80海里的B處,沿正西方向航行2小時后到達小島的北偏西45°的C處,則該船行駛的速度為海里/小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)點A(x1 , y1)和B(x2 , y2)是反比例函數(shù)y= 圖象上的兩個點,當x1<x2<0時,y1<y2 , 則一次函數(shù)y=﹣2x+k的圖象不經(jīng)過的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條南北方向的公路上,有一輛出租車停在A地,乘車的第一位客人向南走3千米下車;該車繼續(xù)向南開,又走了2千米后,上來第二位客人,第二位客人乘車向北走7千米下車,此時恰好有第三位客人上車,先向北走3千米,又調(diào)頭向南走,結(jié)果下車時出租車恰好到了A地.

(1)如果以A地為原點,向北方向為正方向,用1個單位表示1千米,在數(shù)軸上表示出第一位客人和第二位客人下車的位置;

(2)第三位客人乘車走了多少千米?

(3)規(guī)定出租車的收費標準是4千米內(nèi)付7元,超過4千米的部分每千米加付1元(不足1千米按1千米算),那么該出租車司機在這三位客人中共收了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線l1y=kx+b與直線l2y=bx+k在同一坐標系中的大致位置是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面材料:已知點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為|AB|.

當A、B兩點中有一點在原點時,不妨設(shè)點A在原點,如圖1,|AB|=|OB|=|b|=|a﹣b|

當A、B兩點都不在原點時,

(1)如圖2,點A、B都在原點的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|

(2)如圖3,點A、B都在原點的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|

(3)如圖4,點A、B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|

綜上,數(shù)軸上A、B兩點的距離|AB|=|a﹣b|

回答下列問題:

(1)數(shù)軸上表示﹣2和﹣5兩點之間的距離是多少;

(2)數(shù)軸上表示x和﹣1的兩點A、B之間的距離是|x+1|,如果|AB|=2,那么x為多少;

(3)當代數(shù)式|x+1|+|x﹣2|取最小值時,寫出相應(yīng)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ABC=100°,ACB的平分線交AB邊于點E,在AC邊取點D,使∠CBD=20°,連接DE,則∠CED的大小=_____(度).

查看答案和解析>>

同步練習冊答案