【題目】解方程:
(1)x2+2x﹣2=0 (2)3x2+4x﹣7=0
(3)(x+3)(x﹣1)=5 (4)(3﹣x)2+x2=9.
【答案】(1)x=﹣1;(2)x=1或x=﹣;(3)x=2或x=﹣4;(4)x=0或x=3.
【解析】
(1)根據(jù)根的判別式得到根的正負(fù),再根據(jù)公式法進(jìn)行計(jì)算即可得到答案;
(2)進(jìn)行因式分解,計(jì)算即可得到對答案;
(3)先整理,再進(jìn)行因式分解計(jì)算,即可得到答案;
(4)先整理,再進(jìn)行因式分解計(jì)算,即可得到答案.
解:(1)∵a=1,b=2,c=﹣2,
∴△=b2﹣4ac=4﹣4×1×(﹣2)=12>0,
則x==﹣1;
(2)∵(x﹣1)(3x+7)=0,
∴x﹣1=0或3x+7=0,
解得:x=1或x=﹣;
(3)整理成一般式得:x2+2x﹣8=0,
∴(x﹣2)(x+4)=0,
則x﹣2=0或x+4=0,
解得:x=2或x=﹣4;
(4)整理成一般式得2x2﹣6x=0,
∴2x(x﹣3)=0,
則x=0或x﹣3=0,
解得:x=0或x=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)連接BC,若cos∠CAD=,⊙O的半徑為5,求CD、AE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為銳角內(nèi)部一點(diǎn),過點(diǎn)作于點(diǎn),于點(diǎn),以為直徑作,交直線于點(diǎn),連接,交于點(diǎn).
(1)求證:.
(2)連接,當(dāng),時(shí),在點(diǎn)的整個(gè)運(yùn)動(dòng)過程中.
①若,求的長.
②若為等腰三角形,求所有滿足條件的的長.
(3)連接,交于點(diǎn),當(dāng),時(shí),記的面積為,的面積為,請寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義一種新函數(shù):形如(,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個(gè)結(jié)論:①圖象與坐標(biāo)軸的交點(diǎn)為,和;②圖象具有對稱性,對稱軸是直線;③當(dāng)或時(shí),函數(shù)值隨值的增大而增大;④當(dāng)或時(shí),函數(shù)的最小值是0;⑤當(dāng)時(shí),函數(shù)的最大值是4.其中正確結(jié)論的個(gè)數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD和正方形AEFG中,邊AE在邊AB上,AB=,AE=1.將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),設(shè)BE的延長線交直線DG于點(diǎn)P,當(dāng)點(diǎn)P,G第一次重合時(shí)停止旋轉(zhuǎn).在這個(gè)過程中:
(1)∠BPD=______度;
(2)點(diǎn)P所經(jīng)過的路徑長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在矩形ABCD中,對角線AC與BD相交于點(diǎn)O,過點(diǎn)O作直線EF⊥BD,且交AD于點(diǎn)E,交BC于點(diǎn)F,連接BE,DF,且BE平分∠ABD.
①求證:四邊形BFDE是菱形;
②直接寫出∠EBF的度數(shù).
(2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,H為GD的中點(diǎn),連接FH,并延長FH交ED于點(diǎn)J,連接IJ,IH,IF,IG.試探究線段IH與FH之間滿足的關(guān)系,并說明理由;
(3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿足AB=AD時(shí),點(diǎn)E是對角線AC上一點(diǎn),連接DE,作EF⊥DE,垂足為點(diǎn)E,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時(shí),小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.下列敘述正確的是( 。
A. 小球的飛行高度不能達(dá)到15m
B. 小球的飛行高度可以達(dá)到25m
C. 小球從飛出到落地要用時(shí)4s
D. 小球飛出1s時(shí)的飛行高度為10m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】選用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)(x+1) 2-3 (x +1)+2=0 (2) (3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com