【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數(shù);
(3)△DEF可能是等腰直角三角形嗎?為什么?
【答案】
(1)證明:∵AB=AC∴∠B=∠C,
在△BDE與△CEF中
∴△BDE≌△CEF.
∴DE=EF,即△DEF是等腰三角形
(2)解:由(1)知△BDE≌△CEF,
∴∠BDE=∠CEF
∵∠CEF+∠DEF=∠BDE+∠B
∴∠DEF=∠B
∵AB=AC,∠A=40°
∴∠DEF=∠B=
(3)解:△DEF不可能是等腰直角三角形.
∵AB=AC,∴∠B=∠C≠90°
∴∠DEF=∠B≠90°,
∴△DEF不可能是等腰直角三角形
【解析】(1)根據(jù)全等三角形的判定方法SAS,得到△BDE≌△CEF,得到DE=EF,即△DEF是等腰三角形;(2)根據(jù)三角形內(nèi)角和定理求出∠DEF=∠B的度數(shù);(3)由等腰直角三角形的性質(zhì)可知,是有一個角是90°的等腰三角形,∠DEF=∠B≠90°,得到△DEF不可能是等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(5,6)與點B關于x軸對稱,則點B的坐標為( )
A. (5,6) B. (-5,-6) C. (-5,6) D. (5,-6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市今年中考理化實驗操作考試,采用學生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學試驗(用紙簽D、E、F表示)中各抽取一個實驗操作進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.用列表或畫樹狀圖的方法求小剛抽到物理實驗B和化學實驗F的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為解決江北學校學生上學過河難的問題,鄉(xiāng)政府決定修建一座橋,建橋過程中需測量河的寬度(即兩平行
河岸AB與MN之間的距離).在測量時,選定河對岸MN上的點C處為橋的一端,在河岸點A處,測得∠CAB=30°,
沿河岸AB前行30米后到達B處,在B處測得∠CBA=60°,請你根據(jù)以上測量數(shù)據(jù)求出河的寬度.(參考數(shù)據(jù):≈1.41,≈1.73,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,過點C作CD⊥AB于點D,點E是AB邊上一動點(不含端點A、B),連接CE,過點B作CE的垂線交直線CE于點F,交直線CD于點G(如圖①).
(1)求證:AE=CG;
(2)若點E運動到線段BD上時(如圖②),試猜想AE、CG的數(shù)量關系是否發(fā)生變化,請直接寫出你的結(jié)論;
(3)過點A作AH垂直于直線CE,垂足為點H,并交CD的延長線于點M(如圖③),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com