如圖所示,已知ABCD中,E為AD的中點,CE的延長線交BA的延長線于點F.

(1)

求證:CD=FA;

(2)

若使∠F=∠BCF,ABCD的邊長之間還需再添加一個什么條件?請你補(bǔ)上這個條件,并進(jìn)行證明(不要再增添輔助線).

答案:
解析:

(1)

  證明:在ABCD中,因為CD∥BA,所以CD∥BF.

  所以∠D=∠EAF.因為E為AD的中點,所以DE=AE.因為∠CED=∠FEA,所以△CDE≌△FAE.

  所以CD=FA.

(2)

  解:添加BC=2CD.

  由(1)知CD=AF,所以BC=BF.所以∠F=∠BCF.

  說明:欲尋求添加的條件,可以這樣想.若∠F=∠BCF,則有BC=BF,又AF=AB,所以BC=2AB.即找到添加的條件.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,已知△ABC是邊長為6cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速運(yùn)動,其中點P運(yùn)動的速度是1m/s,點Q運(yùn)動的速度是2m/s,當(dāng)點Q到達(dá)點C時,P、Q兩點都停止運(yùn)動,設(shè)運(yùn)動時間為t s,解答下列問題:
(1)當(dāng)點Q到達(dá)點C時,PQ與AB的位置關(guān)系如何?請說明理由.
(2)在點P與點Q的運(yùn)動過程中,△BPQ是否能成為等邊三角形?若能,請求出t,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖所示,已知△ABC與△CDA關(guān)于點O對稱,過O任作直線EF分別交AD、BC于點E、F,下面的結(jié)論:(1)點E和點F;B和D是關(guān)于中心O的對稱點;(2)直線BD必經(jīng)過點O;(3)四邊形ABCD是中心對稱圖形;(4)四邊形DEOC與四邊形BFOA的面積必相等;(5)△AOE與△COF成中心對稱,其中正確的個數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC內(nèi)接于⊙O,AD平分∠BAC交BC于點P、交⊙O于點D,連接DB、DC,在AD上取一點精英家教網(wǎng)I,使DI=DB.
(1)求證:DI2=DP•AD;    
(2)求證:∠ABI=∠CBI;
(3)若⊙O的半徑為
3
,∠BAC=120°,求△BDC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC≌△DCB,是其中AB=DC,試說明∠ABD=∠ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC:
(1)過A畫出中線AD;
(2)畫出角平分線CE;
(3)作AC邊上的高BF.

查看答案和解析>>

同步練習(xí)冊答案