【題目】中華文明,源遠流長;中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團委組織了一次全校2000名學生參加的“中國詩詞大會”海選比賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機抽取了其中200名學生的海選比賽成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列統(tǒng)計圖表: 抽取的200名學生海選成績分組表

組別

海選成績x

A組

50≤x<60

B組

60≤x<70

C組

70≤x<80

D組

80≤x<90

E組

90≤x<100

請根據(jù)所給信息,解答下列問題:
(1)請把圖1中的條形統(tǒng)計圖補充完整;(溫馨提示:請畫在答題卷相對應的圖上)
(2)在圖2的扇形統(tǒng)計圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 , 表示C組扇形的圓心角θ的度數(shù)為度;
(3)規(guī)定海選成績在90分以上(包括90分)記為“優(yōu)等”,請估計該校參加這次海選比賽的2000名學生中成績“優(yōu)等”的有多少人?

【答案】
(1)解:D的人數(shù)是:200﹣10﹣30﹣40﹣70=50(人),

補圖如下:


(2)15;72
(3)解:根據(jù)題意得:

2000× =700(人),

答:估計該校參加這次海選比賽的2000名學生中成績“優(yōu)等”的有700人


【解析】(2)B組人數(shù)所占的百分比是 ×100%=15%, 則a的值是15;
C組扇形的圓心角θ的度數(shù)為360× =72°;
故答案為:15,72;
(1)用隨機抽取的總人數(shù)減去A、B、C、E組的人數(shù),求出D組的人數(shù),從而補全統(tǒng)計圖;(2)用B組抽查的人數(shù)除以總人數(shù),即可求出a;用360乘以C組所占的百分比,求出C組扇形的圓心角θ的度數(shù);(3)用該校參加這次海選比賽的總人數(shù)乘以成績在90分以上(包括90分)所占的百分比,即可得出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABD∠BDC的平分線交于點E,BE的延長線交CD于點F,且∠1+∠2=90°.猜想∠2∠3的關系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD頂點A、B在x軸上,點D在y軸上,函數(shù)y= (x>0)的圖象經(jīng)過點C(2,3),直線AD交雙曲線于點E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點F.

(1)若EB= OD,求點E的坐標;
(2)若四邊形ABCD為平行四邊形,求過A、D兩點的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知點C(1,0),直線y=﹣x+7與兩坐標軸分別交于A,B兩點,D,E分別是AB,OA上的動點,則△CDE周長的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線與雙曲線交于兩點,且點的橫坐標為

1)求的值;

2)若雙曲線上一點的縱坐標為8,求的面積;

3)過原點的另一條直線交雙曲線兩點(點在第一象限),若由點為頂點組成的四邊形面積為,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是( 。

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點C在以AB為直徑的半圓上,∠CAB的平分線AD交BC于點D,⊙O經(jīng)過A、D兩點,且圓心O在AB上.
(1)求證:BD是⊙O的切線.
(2)若 , ,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點,以O為圓心的半圓與AB邊相切于點D,與AC、BC邊分別交于點E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.

查看答案和解析>>

同步練習冊答案