為了測(cè)量被池塘隔開(kāi)的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有( )

A.1組
B.2組
C.3組
D.4組
【答案】分析:根據(jù)三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性質(zhì),根據(jù)=即可解答.
解答:解:此題比較綜合,要多方面考慮,
①因?yàn)橹馈螦CB和BC的長(zhǎng),所以可利用∠ACB的正切來(lái)求AB的長(zhǎng);
②可利用∠ACB和∠ADB的正切求出AB;
③,因?yàn)椤鰽BD∽△EFD可利用=,求出AB;
④無(wú)法求出A,B間距離.
故共有3組可以求出A,B間距離.
故選C.
點(diǎn)評(píng):本題考查相似三角形的應(yīng)用和解直角三角形的應(yīng)用,解答道題的關(guān)鍵是將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,本題只要把實(shí)際問(wèn)題抽象到相似三角形,解直角三角形即可求出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•德州)為了測(cè)量被池塘隔開(kāi)的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(山東德州卷)數(shù)學(xué)(解析版) 題型:選擇題

為了測(cè)量被池塘隔開(kāi)的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有【    】

A.1組     B.2組     C.3組     D.4組

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

為了測(cè)量被池塘隔開(kāi)的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有


  1. A.
    1組
  2. B.
    2組
  3. C.
    3組
  4. D.
    4組F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年山東省德州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

為了測(cè)量被池塘隔開(kāi)的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有( )

A.1組
B.2組
C.3組
D.4組

查看答案和解析>>

同步練習(xí)冊(cè)答案