【題目】如圖,在大樓AB的正前方有一斜坡CD,已知斜坡CD長6 米,坡角∠DCE等于45°,小紅在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的頂點D處測得樓頂B的仰角為45°,其中點A、C、E在同一直線上.

(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號).

【答案】
(1)

解:在Rt△DCE中,DC=6 米,∠DCE=30°,∠DEC=90°,

∴DE=EC=6米;


(2)

解:過D作DF⊥AB,交AB于點F,

∵∠BFD=90°,∠BDF=45°,

∴∠BFD=45°,即△BFD為等腰直角三角形,則DF=BF,

設(shè)AB=x米,則BF=(x﹣6)米.

∵四邊形DEAF為矩形,

∴AF=DE=6米,即AB=BF=(x﹣6)米,AC=(x﹣12)米,

在Rt△ABC中,∠ABC=30°,

tan30°= ,即 =

解得:x=18+6 ,

即大樓的高度是18+6 米.


【解析】(1)在直角三角形DCE中,利用銳角三角函數(shù)定義求出DE的長即可;(2)過D作DF垂直于AB,交AB于點F,可得出三角形BDF為等腰直角三角形,設(shè)AB=x米,則BF=(x﹣6)米,AC=(x﹣12)米,在Rt△ABC中,利用三角函數(shù)即可列方、方程求得x的值.
【考點精析】解答此題的關(guān)鍵在于理解關(guān)于仰角俯角問題的相關(guān)知識,掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)計算:(﹣1)2017﹣(2﹣ 0+ ;
(2)化簡:(x﹣y)2﹣(x﹣2y)(x+y).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個等腰Rt△ABC對折,使∠A與∠B重合,展開后得折痕CD,再將∠A折疊,使C落在AB上的點F處,展開后,折痕AE交CD于點P,連接PF、EF,下列結(jié)論:①tan∠CAE= ﹣1;②圖中共有4對全等三角形;③若將△PEF沿PF翻折,則點E一定落在AB上;④PC=EC;⑤S四邊形DFEP=SAPF . 正確的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學(xué)生最喜愛的一種書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:

(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)請把折線統(tǒng)計圖(圖1)補充完整;
(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應(yīng)的圓心角的度數(shù);
(4)如果這所中學(xué)共有學(xué)生1800名,那么請你估計最喜愛科普類書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當(dāng)正方形CDEF的邊長為2時,陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣ x+2與y軸交于點A,頂點為B.點P是x軸上的一個動點,當(dāng)點P的坐標(biāo)是時,|PA﹣PB|取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.

(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標(biāo);若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黔東南州某中學(xué)為了解本校學(xué)生平均每天的課外學(xué)習(xí)實踐情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果分為A,B,C,D四個等級,設(shè)學(xué)生時間為t(小時),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中信息解答下列問題:

(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?并將條形統(tǒng)計圖補充完整;
(2)本次抽樣調(diào)查中,學(xué)習(xí)時間的中位數(shù)落在哪個等級內(nèi)?
(3)表示B等級的扇形圓心角α的度數(shù)是多少?
(4)在此次問卷調(diào)查中,甲班有2人平均每天課外學(xué)習(xí)時間超過2小時,乙班有3人平均每天課外學(xué)習(xí)時間超過2小時,若從這5人中任選2人去參加座談,試用列表或化樹狀圖的方法求選出的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為2cm/s和1cm/s.FQ⊥BC,分別交AC、BC于點P和Q,設(shè)運動時間為t(s)(0<t<4).

(1)連結(jié)EF、DQ,若四邊形EQDF為平行四邊形,求t的值;
(2)連結(jié)EP,設(shè)△EPC的面積為ycm2 , 求y與t的函數(shù)關(guān)系式,并求y的最大值;
(3)若△EPQ與△ADC相似,請直接寫出t的值.

查看答案和解析>>

同步練習(xí)冊答案