經(jīng)過(guò)點(diǎn)(3,2)的反比例函數(shù)的表達(dá)式為   
【答案】分析:設(shè)出反比例函數(shù)表達(dá)式,然后把點(diǎn)的坐標(biāo)代入進(jìn)行計(jì)算即可得解.
解答:解:設(shè)反比例函數(shù)表達(dá)式為y=
∵函數(shù)經(jīng)過(guò)點(diǎn)(3,2),
=2,
解得k=6,
所以,反比例函數(shù)表達(dá)式為y=
故答案為:y=
點(diǎn)評(píng):本題考查了待定系數(shù)法求反比例函數(shù)解析式,是求函數(shù)解析式常用的方法,需要熟練掌握并靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在△ABC中,∠ACB=90°,AC=BC,現(xiàn)將一塊邊長(zhǎng)足夠大的直角三角板的直角頂點(diǎn)置于AB的中點(diǎn)O處,兩直角邊分別經(jīng)過(guò)點(diǎn)B、C,然后將三角板繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度反(0°<a<90°),旋轉(zhuǎn)后,直角三角板的直角邊分別與AC、BC相交于點(diǎn)K、H,四邊形CHOK是旋轉(zhuǎn)過(guò)程中三角板與△ABC的重疊部分(如圖1所示).那么,在上述旋轉(zhuǎn)過(guò)程中:
(1)如圖1,線段BH與CK具有怎樣的數(shù)量關(guān)系?四邊形CHOK的面積是否發(fā)生變化?請(qǐng)說(shuō)明你發(fā)現(xiàn)的結(jié)論的理由.
(2)如圖2,連接HK,
①若AK=12,BH=5,求△OKH的面積;
②若AC=BC=4,設(shè)BH=x,當(dāng)△CKH的面積為2時(shí),求x的值,并說(shuō)出此時(shí)四邊形CHOK是什么特殊四邊形.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面上,給定了半徑為r的圓O,對(duì)于任意點(diǎn)P,在射線OP上取一點(diǎn)P′,使得OP•OP′=r2,這把點(diǎn)P變?yōu)辄c(diǎn)P的變換叫做反演變換,點(diǎn)P與點(diǎn)P′叫做互為反演點(diǎn).
(1)如圖2,⊙O內(nèi)外各一點(diǎn)A和B,它們的反演點(diǎn)分別為A和B′.求證:∠A′=∠B;
(2)如果一個(gè)圖形上各點(diǎn)經(jīng)過(guò)反演變換得到的反演點(diǎn)組成另一個(gè)圖形,那么這兩個(gè)圖形叫做互為反演圖形.
精英家教網(wǎng)
①選擇:如果不經(jīng)過(guò)點(diǎn)O的直線l與⊙O相交,那么它關(guān)于⊙O的反演圖形是( 。
A、一個(gè)圓;B、一條直線;C、一條線段;D、兩條射線
②填空:如果直線l與⊙O相切,那么它關(guān)于⊙O的反演圖形是
 
,該圖形與圓O的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,平面直角坐標(biāo)系上有A(a,0)、B(0,-b)、C(b,0)三點(diǎn),且a≥b>0,拋物線y=(x-2)(x-m)-(n-2)(n-m). (m,n為常數(shù),且m+2≥2n>0),經(jīng)過(guò)點(diǎn)A和點(diǎn)C,頂點(diǎn)為P
(1)當(dāng)m,n滿足什么關(guān)系時(shí),S△AOB最大;
(3)如圖,當(dāng)△ACP為直角三角形時(shí),判斷以下命題是否正確:“直角三角形DEF的三個(gè)頂點(diǎn)都在這條拋物線上,且DF∥x軸,那么△ACP與△DEF斜邊上的高相等”,如果正確請(qǐng)予以證明,不正確請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江一模)如圖1,在平面上,給定了半徑為r的⊙O,對(duì)于任意點(diǎn)P,在射線OP上取一點(diǎn)P′,使得OP•OP′=r2,這種把點(diǎn)P變?yōu)辄c(diǎn)P′的變換叫做反演變換,點(diǎn)P與點(diǎn)P′叫做互為反演點(diǎn),⊙O稱為基圓.
(1)如圖2,⊙O內(nèi)有不同的兩點(diǎn)A、B,它們的反演點(diǎn)分別是A′、B′,則與∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如圖3,⊙O內(nèi)有一點(diǎn)M,請(qǐng)用尺規(guī)作圖畫出點(diǎn)M的反演點(diǎn)M′;(保留畫圖痕跡,不必寫畫法).
(3)如果一個(gè)圖形上各點(diǎn)經(jīng)過(guò)反演變換得到的反演點(diǎn)組成另一個(gè)圖形,那么這兩個(gè)圖形叫做互為反演圖形.已知基圓O的半徑為r,另一個(gè)半徑為r1的⊙C,作射線OC交⊙C于點(diǎn)A、B,點(diǎn)A、B關(guān)于⊙O的反演點(diǎn)分別是A′、B′,點(diǎn)M為⊙C上另一點(diǎn),關(guān)于⊙O的反演點(diǎn)為M′.求證:∠A′M′B′=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省廈門市思明區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知,平面直角坐標(biāo)系上有A(a,0)、B(0,-b)、C(b,0)三點(diǎn),且a≥b>0,拋物線y=(x-2)(x-m)-(n-2)(n-m). (m,n為常數(shù),且m+2≥2n>0),經(jīng)過(guò)點(diǎn)A和點(diǎn)C,頂點(diǎn)為P
(1)當(dāng)m,n滿足什么關(guān)系時(shí),S△AOB最大;
(3)如圖,當(dāng)△ACP為直角三角形時(shí),判斷以下命題是否正確:“直角三角形DEF的三個(gè)頂點(diǎn)都在這條拋物線上,且DF∥x軸,那么△ACP與△DEF斜邊上的高相等”,如果正確請(qǐng)予以證明,不正確請(qǐng)舉出反例.

查看答案和解析>>

同步練習(xí)冊(cè)答案