如圖,點(diǎn)P是圓O的直徑BC的延長(zhǎng)線上一點(diǎn),過點(diǎn)P作圓O的切線PA,切點(diǎn)為A,連接BA、OA、CA,過點(diǎn)A作AD⊥BC于D,請(qǐng)你找出圖中共有______個(gè)直角(不要再添加輔助線),并用“┓”符號(hào)在圖中標(biāo)注出來.
∵PA切⊙O于A,
∴∠OAP=90°,
∵圓O的直徑是BC,
∴∠BAC=90°,
∵AD⊥BC于D,
∴∠ADB=∠ADP=90°.
共4個(gè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC中,CA=CB,點(diǎn)D為AC的中點(diǎn),以AD為直徑的⊙O切BC于點(diǎn)E,AD=2.
(1)求BE的長(zhǎng);
(2)過點(diǎn)D作DFBC交⊙O于點(diǎn)F,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA、PB是⊙O的切線,切點(diǎn)為A、B,若∠OAB=30°,則∠P的度數(shù)為( 。
A.60°B.90°C.120°D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一副斜邊相等的直角三角板(∠DAC=45°,∠BAC=30°),按如圖所示的方式在平面內(nèi)拼成一個(gè)四邊形.
(1)A,B,C,D四點(diǎn)在同一個(gè)圓上嗎?如果在,請(qǐng)寫出證明過程;如果不在,請(qǐng)說明理由;
(2)過點(diǎn)D作直線lAC,求證:l是這個(gè)圓的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AD是⊙O直徑,過點(diǎn)A的切線與CB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:EA2=EB•EC;
(2)若EA=AC,cos∠EAB=
4
5
,AE=12,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長(zhǎng)線交⊙O于點(diǎn)Q,過點(diǎn)Q的直線交OA延長(zhǎng)線于點(diǎn)R,且RP=RQ
求證:直線QR是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知,PD為⊙O的直徑,直線BC切⊙O于點(diǎn)C,BP的延長(zhǎng)線與CD的延長(zhǎng)線交于點(diǎn)A,∠A=28°,∠B=26°,則∠PDC等于( 。
A.34°B.36°C.38°D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知PAB是⊙O的割線,AB為⊙O的直徑,PC為⊙O的切線,C為切點(diǎn),BD⊥PC于點(diǎn)D,交⊙O于點(diǎn)E,PA=AO=OB=1.
(Ⅰ)求∠P的度數(shù);
(Ⅱ)求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA切⊙O于點(diǎn)A,PBC是⊙O的一條割線,且PA=2
3
,BC=2PB,那么PB的長(zhǎng)為(  )
A.2B.
6
C.4D.2
6

查看答案和解析>>

同步練習(xí)冊(cè)答案