【題目】數(shù)軸上從左到右有A,B,C三個(gè)點(diǎn),點(diǎn)C對(duì)應(yīng)的數(shù)是10,AB=BC=20.
(1)點(diǎn)A對(duì)應(yīng)的數(shù)是 ,點(diǎn)B對(duì)應(yīng)的數(shù)是 .
(2)動(dòng)點(diǎn)P從A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
①用含t的代數(shù)式表示點(diǎn)P對(duì)應(yīng)的數(shù)是 ,點(diǎn)Q對(duì)應(yīng)的數(shù)是 ;
②當(dāng)點(diǎn)P和點(diǎn)Q間的距離為8個(gè)單位長(zhǎng)度時(shí),求t的值.
【答案】(1)﹣30,﹣10;(2)①4t﹣30,t﹣10;②t的值為4或.
【解析】
(1)由AB,BC的長(zhǎng)度結(jié)合點(diǎn)C對(duì)應(yīng)的數(shù)及點(diǎn)A,B,C的位置關(guān)系,可得出點(diǎn)A,B對(duì)應(yīng)的數(shù);
(2)①由點(diǎn)P,Q的出發(fā)點(diǎn)、運(yùn)動(dòng)方向及速度,可得出運(yùn)動(dòng)時(shí)間為t秒時(shí)點(diǎn)P,Q對(duì)應(yīng)的數(shù);
②由①結(jié)合PQ=8,可得出關(guān)于t的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論.
解:(1)∵AB=BC=20,點(diǎn)C對(duì)應(yīng)的數(shù)是10,點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B在點(diǎn)C左側(cè),
∴點(diǎn)B對(duì)應(yīng)的數(shù)為10﹣20=﹣10,點(diǎn)A對(duì)應(yīng)的數(shù)為﹣10﹣20=﹣30.
故答案為:﹣30;﹣10.
(2)①當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),點(diǎn)P對(duì)應(yīng)的數(shù)是4t﹣30,點(diǎn)Q對(duì)應(yīng)的數(shù)是t﹣10.
故答案為:4t﹣30;t﹣10.
②依題意,得:|t﹣10﹣(4t﹣30)|=8,
∴20﹣3t=8或3t﹣20=8,
解得:t=4或t=.
∴t的值為4或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知3x=2y=5z≠0,求的值;
(2)某市政工程計(jì)劃將安裝的路燈交給甲、乙兩家燈飾廠完成,已知甲廠生產(chǎn)100個(gè)路燈與乙廠生產(chǎn)150個(gè)路燈所用時(shí)間相同,且甲廠比乙廠每天少生產(chǎn)10個(gè)路燈,問(wèn)甲、乙兩家工廠每天各生產(chǎn)路燈多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長(zhǎng),交AB延長(zhǎng)線于點(diǎn)E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當(dāng)∠BOD=°時(shí),四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某屆世界杯足球賽即將開(kāi)幕,某媒體足球欄目從參加世界杯的球隊(duì)中選出五支傳統(tǒng)強(qiáng)隊(duì):意大利隊(duì)、德國(guó)隊(duì)、西班牙隊(duì)、巴西隊(duì)、阿根廷隊(duì),對(duì)哪支球隊(duì)最有可能獲得冠軍進(jìn)行了問(wèn)卷調(diào)查,為了使調(diào)查結(jié)果有效,每位被調(diào)查者只能填寫(xiě)一份問(wèn)卷,在問(wèn)卷中必須選擇這五支球隊(duì)中的一隊(duì)作為調(diào)查結(jié)果.從收集到的4800份有效問(wèn)卷中隨機(jī)抽取部分問(wèn)卷進(jìn)行統(tǒng)計(jì),繪制了統(tǒng)計(jì)圖表的一部分如下:
根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)a= ,b= ;
(2)根據(jù)以上信息,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)在提供有效問(wèn)卷的這4800人中有多少人預(yù)測(cè)德國(guó)隊(duì)最有可能獲得冠軍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知四邊形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD為銳角.
(1)求證:AD⊥BF;
(2)若BF=BC,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:善于思考的小軍在解方程組時(shí),采用了一種“整體代換”的解法,
解:將方程②變形:4x+10y+y=5即2(2x+5y)+y=5③,把方程①代入③得:2×3+y=5,y=﹣1,把y=﹣1代入①得x=4,所以,方程組的解為.
請(qǐng)你解決以下問(wèn)題:
(1)模仿小軍的“整體代換”法解方程組.
(2)已知x,y滿足方程組,求x2+4y2﹣xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PQ∥MN,A、B分別為直線MN、PQ上兩點(diǎn),且∠BAN=45°,若射線AM繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至AN后立即回轉(zhuǎn),射線BQ繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)至BP后立即回轉(zhuǎn),兩射線分別繞點(diǎn)A、點(diǎn)B不停地旋轉(zhuǎn),若射線AM轉(zhuǎn)動(dòng)的速度是a°/秒,射線BQ轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿足|a﹣5|+(b﹣1)2=0.(友情提醒:鐘表指針走動(dòng)的方向?yàn)轫槙r(shí)針?lè)较颍?/span>
(1)a= ,b= ;
(2)若射線AM、射線BQ同時(shí)旋轉(zhuǎn),問(wèn)至少旋轉(zhuǎn)多少秒時(shí),射線AM、射線BQ互相垂直.
(3)若射線AM繞點(diǎn)A順時(shí)針先轉(zhuǎn)動(dòng)18秒,射線BQ才開(kāi)始繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),在射線BQ到達(dá)BA之前,問(wèn)射線AM再轉(zhuǎn)動(dòng)多少秒時(shí),射線AM、射線BQ互相平行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點(diǎn)E從D點(diǎn)出發(fā),以每秒4個(gè)單位的速度沿D→A→D勻速移動(dòng),點(diǎn)F從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿CB向點(diǎn)B作勻速移動(dòng),點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動(dòng),三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動(dòng),假設(shè)移動(dòng)時(shí)間為t秒.
(1)試說(shuō)明:AD∥BC;
(2)在移動(dòng)過(guò)程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請(qǐng)你探究這樣的情況會(huì)出現(xiàn)幾次?并分別求出此時(shí)的移動(dòng)時(shí)間t和G點(diǎn)的移動(dòng)距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B、C重合的一個(gè)動(dòng)點(diǎn),把△EBF沿EF折疊,點(diǎn)B落在B′處,若△CDB′恰為等腰三角形,則DB′的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com