【題目】如圖,在中,邊上,,的中點(diǎn),連接并延長交,則______

【答案】

【解析】

OBC的平行線交ACG,由中位線的知識可得出ADDC=12,根據(jù)已知和平行線分線段成比例得出AD=DG=GC,AGGC=21,AOOE=21,再由同高不同底的三角形中底與三角形面積的關(guān)系可求出BEEC的比.

解:如圖,過OOGBC,交ACG,


OBD的中點(diǎn),
GDC的中點(diǎn).
ADDC=12,
AD=DG=GC
AGGC=21,AOOE=21
SAOBSBOE=2
設(shè)SBOE=S,SAOB=2S,又BO=OD,
SAOD=2S,SABD=4S,
ADDC=12,
SBDC=2SABD=8S,S四邊形CDOE=7S
SAEC=9S,SABE=3S,
==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次臺風(fēng)來襲時(shí),一棵筆直大樹樹干AB(假定樹干AB垂直于水平地面)被刮傾斜7°(即∠BAB′=7°)后折斷倒在地上,樹的頂部恰好接觸到地面D處,測得∠CDA37°,AD5米,求這棵大樹AB的高度.(結(jié)果保留根號)(參考數(shù)據(jù):sin370.6,cos370.8tan370.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),ADDCD,且AC平分∠DAB.延長DCAB的延長線于點(diǎn)P

1)求證:PC2PAPB;

2)若3AC4BC,⊙O的直徑為7,求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在AC上的一點(diǎn),分別切于點(diǎn),與AC相交于點(diǎn)E,連接BO.

求證:

,則______,______;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊長為1,點(diǎn)E在邊BC上,若∠AEF=900,且EF交正方形外角的平分線CF于點(diǎn)F

1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來證明AE=EF,請敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);

2)如圖2,若點(diǎn)E在線段BC上滑動(不與點(diǎn)B,C重合).

①AE=EF是否總成立?請給出證明;

在如圖2的直角坐標(biāo)系中,當(dāng)點(diǎn)E滑動到某處時(shí),點(diǎn)F恰好落在拋物線上,求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)問題,如圖1,在等邊中,,的中點(diǎn),,分別是邊,上的動點(diǎn),且,若,試求的長.愛鉆研的小峰同學(xué)發(fā)現(xiàn),可以通過幾何與函數(shù)相結(jié)合的方法來解決這個(gè)問題,下面是他的探究思路,請幫他補(bǔ)充完整.

1)注意到為等邊三角形,且,可得,于是可證,進(jìn)而可得,注意到中點(diǎn),,因此滿足的等量關(guān)系為______

2)設(shè),,則的取值范圍是______.結(jié)合(1)中的關(guān)系求的函數(shù)關(guān)系.

3)在平面直角坐標(biāo)系中,根據(jù)已有的經(jīng)驗(yàn)畫出的函數(shù)圖象,請?jiān)趫D2中完成畫圖.

4)回到原問題,要使,即為,利用(3)中的圖象,通過測量,可以得到原問題的近似解為______(精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價(jià) x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.

1)求該商品每天的銷售量 y 與銷售單價(jià) x 之間的函數(shù)關(guān)系式;

2)若商店按單價(jià)不低于成本價(jià),且不高于 50 元銷售,則銷售單價(jià)定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?

3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應(yīng)為多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,△ABC為等邊三角形,點(diǎn)DE分別為邊AB、AC上的一點(diǎn),將圖形沿線段DE所在的直線翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處求證:;

2)如圖2,按圖1的翻折方式,若等邊△ABC的邊長為4,當(dāng)時(shí),求的值;

3)如圖3,在中,,點(diǎn)DAB邊上的中點(diǎn),在BC的下方作射線BE,使得,點(diǎn)P是射線BE上一個(gè)動點(diǎn),當(dāng),求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,ACBC分別與⊙O交于點(diǎn)D,E,則下列說法一定正確的是( 。

A.連接BD,可知BD是△ABC的中線B.連接AE,可知AE是△ABC的高線

C.連接DE,可知D.連接DE,可知SCDESABCDEAB

查看答案和解析>>

同步練習(xí)冊答案