【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的m家商業(yè)連鎖店進(jìn)行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.

評估成績n(分

評定等級

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問題:

(1求m的值;

(2在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大;(結(jié)果用度、分、秒表示

(3從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.

【答案】(125;(28°48′;(3

【解析】

試題分析:(1由C等級頻數(shù)為15除以C等級所占的百分比60%,即可求得m的值;(2首先求得B等級的頻數(shù),繼而求得B等級所在扇形的圓心角的大。唬3首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與其中至少有一家是A等級的情況,再利用概率公式求解即可求得答案.

試題解析:(1∵C等級頻數(shù)為15,占60%,

∴m=15÷60%=25;

(2∵B等級頻數(shù)為:25﹣2﹣15﹣6=2,

∴B等級所在扇形的圓心角的大小為:×360°=28.8°=28°48′;

(3評估成績不少于80分的連鎖店中,有兩家等級為A,有兩家等級為B,畫樹狀圖得:

∵共有12種等可能的結(jié)果,其中至少有一家是A等級的有10種情況,

∴其中至少有一家是A等級的概率為:=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D

1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點(diǎn)C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點(diǎn)Ey軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)PM、N分別和點(diǎn)O、B、E對應(yīng)),并且點(diǎn)MN都在拋物線上,作MFx軸于點(diǎn)F,若線段MFBF12,求點(diǎn)MN的坐標(biāo);

③點(diǎn)Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).

(1)求拋物線的解析式及它的對稱軸;

(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;

(3)在拋物線的對稱軸上是否存在點(diǎn)Q,使ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:如圖,在平面直角坐標(biāo)系中,RtAOC的直角邊OCy軸正半軸上,且頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)A的坐標(biāo)為(2,4),直線y=-x+b過點(diǎn)A,與x軸交于點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo)及直線AB的解析式;
(2)動點(diǎn)P從點(diǎn)O出發(fā),以每秒1個單位長的速度,沿O-C-A的路線向點(diǎn)A運(yùn)動,同時動點(diǎn)M從點(diǎn)B出發(fā),以相同的速度沿BO的方向向O運(yùn)動,過點(diǎn)MMQx軸,交線段BA或線段AO于點(diǎn)Q,當(dāng)點(diǎn)P到達(dá)A點(diǎn)時,點(diǎn)P和點(diǎn)M都停止運(yùn)動.在運(yùn)動過程中,設(shè)動點(diǎn)P運(yùn)動的時間為t秒.APQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)是否存在以M、P、Q為頂點(diǎn)的三角形的面積與S相等?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+cyx的部分對應(yīng)值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列結(jié)論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當(dāng)x<1時,函數(shù)值yx的增大而增大;④方程ax2+bx+c=0有一個根大于4,其中正確的結(jié)論有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線lO,AB是O的直徑,ADl于點(diǎn)D.

(1)如圖,當(dāng)直線lO相切于點(diǎn)C時,若DAC=30°,求BAC的大;

(2)如圖,當(dāng)直線lO相交于點(diǎn)E、F時,若DAE=18°,求BAF的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】假山具有多方面的造景功能,與建筑、植物等組合成富于變化的景致.某公園有一座假山,小亮、小慧等同學(xué)想用一些測量工具和所學(xué)的幾何知識測量這座假山的高度來檢驗自己掌握知識和運(yùn)用知識的能力,如圖,在陽光下,小亮站在水平地面的D處,此時小亮身高的影子頂端與假山的影子頂端E重合,這時小亮身高CD的影長DE=2米,一段時間后,小亮從D點(diǎn)沿BD的方向走了3.6米到達(dá)G處,此時小亮身高的影子頂端與假山的影子頂端H重合,這時小亮身高的影長GH=2.4米,已知小亮的身高CD=FG=1.5米,點(diǎn)G,E,D均在直線BH上,AB⊥BH,CD⊥BH,GF⊥BH,請你根據(jù)題中提供的相關(guān)信息,求出假山的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通信公司策劃了兩種上網(wǎng)的月收費(fèi)方式:

收費(fèi)方式

月使用費(fèi)/

包時上網(wǎng)時間/

超時費(fèi)/(元/

30

25

0.05

設(shè)每月上網(wǎng)時間為,方式的收費(fèi)金額分別為(元),(元),如圖是之間函數(shù)關(guān)系的圖象.(友情提示:若累計上網(wǎng)時間不超出包時上網(wǎng)時間,則只收月使用費(fèi);若累計上網(wǎng)時間超出包時上網(wǎng)時間,則對超出部分再加收超時費(fèi))

1 ,

2)求之間的函數(shù)解析式;

3)若每月上網(wǎng)時間為31小時,請直接寫出選擇哪種方式能節(jié)省上網(wǎng)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.

(1)求證:D是BC的中點(diǎn);

(2)求證:△BEC∽△ADC;

(3)若CE=5,BD=6.5,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案