【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M﹣2m).

1)求反比例函數(shù)的解析式;(2)求點B到直線OM的距離.

【答案】12

【解析】

解:(1一次函數(shù)y1=﹣x﹣1M﹣2m),∴m=1∴M﹣2,1)。

M﹣2,1)代入得:k=﹣2。

反比列函數(shù)為。

2)設點B到直線OM的距離為h,過M點作MC⊥y軸,垂足為C。

一次函數(shù)y1=﹣x﹣1y軸交于點B,

B的坐標是(0﹣1)。

Rt△OMC中,

,。

B到直線OM的距離為

1)根據(jù)一次函數(shù)解析式求出M點的坐標,再把M點的坐標代入反比例函數(shù)解析式即可。

2)設點B到直線OM的距離為h,過M點作MC⊥y軸,垂足為C,根據(jù)一次函數(shù)解析式表示出B點坐標,利用△OMB的面積=×BO×MC算出面積,利用勾股定理算出MO的長,再次利用三角形的面積公式可得OMh,根據(jù)前面算的三角形面積可算出h的值

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二元一次方程,通過列舉將方程的解寫成下列表格的形式:

-1

5

6

6

5

0

如果將二元一次方程的解所包含的未知數(shù)的值對應直角坐標系中一個點的橫坐標,未知數(shù)的值對應這個點的縱坐標,這樣每一個二元一次方程的解,就可以對應直角坐標系中的一個點,例如:方程的解的對應點是

1)表格中的___________________;

2)通過以上確定對應點坐標的方法,將表格中給出的五個解依次轉(zhuǎn)化為對應點的坐標,并在所給的直角坐標系中畫出這五個點;根據(jù)這些點猜想方程的解的對應點所組成的圖形是_________,并寫出它的兩個特征①__________,②_____________;

3)若點好落在的解對應的點組成的圖形上,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高服務質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.

1)甲、乙兩種套房每套提升費用各多少萬元?

2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?

3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a0),市政府如何確定方案才能使費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國邊防局接到情報,近海處有一可疑船只正向公海方向行駛,邊防部迅速派出快艇追趕(如圖1) .圖2分別表示兩船相對于海岸的距離 (海里)與追趕時間()之間的關(guān)系.根據(jù)圖象問答問題:

1)①直線與直線 表示到海岸的距離與追趕時間之間的關(guān)系;

比較 速度快;

③如果一直追下去,那么________ ( “能”或“不能")追上;

④可疑船只速度是 海里/分,快艇的速度是 海里/分;

2對應的兩個一次函數(shù)表達式的實際意義各是什么?并直接寫出兩個具體表達式.

3分鐘內(nèi)能否追上?為什么?

4)當逃離海岸海里的公海時,將無法對其進行檢查,照此速度,能否在逃入公海前將其攔截?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,,點邊上一點,連接BD,點上一點,連接,過點,垂足為,交于點

(1)求證:

(2)如圖2,若,點的中點,求證:;

(3)(2)的條件下,如圖3,若,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是等邊三角形,點的中點,點在射線上,點在射線上,,

1)如圖1,若點與點重合,求證:

2)如圖2,若點在線段上,點在線段上,的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某科技小組進行野外考察,途中遇到一片十幾米寬的泥地,他們沿著前進路線鋪了若干塊木板,構(gòu)成一條臨時近道,木板對地面的壓強p(Pa)是木板面積S(m2)的反比例函數(shù),其圖象如圖所示.

(1)寫出這一函數(shù)的關(guān)系式和自變量的取值范圍.

(2)當木板面積為0.2m2時,壓強是多少?

(3)如果要求壓強不超過6000Pa,那么木板的面積至少為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,兩點的坐標分別是點,點,且滿足:

1)求的度數(shù);

2)點軸正半軸上點上方一點(不與點重合),以為腰作等腰,過點軸于點

求證:;

②連接軸于點,若,求點的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,現(xiàn)有兩點、分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為1cm/s,點N的速度為2 cm/s.當點N第一次到達B點時,、同時停止運動.

1)點、運動幾秒時,、兩點重合?

2)點、運動幾秒時,可得到等邊三角形?

3)當點BC邊上運動時,能否得到以MN為底邊的等腰三角形AMN?如存在,請求出此時、運動的時間.

查看答案和解析>>

同步練習冊答案