如圖,P是△ABC內(nèi)一點,連接BP,PC,延長BP交AC于D.
(1)圖中有幾個三角形;
(2)求證:AB+AC>PB+PC.
分析:(1)直接找出圖中的三角形即可,注意要不重不漏;
(2)利用三角形的三邊關(guān)系可得AB+AD>BD,PD+CD>PC,再把兩個式子相加進行變形即可.
解答:(1)解:圖中三角形有△ABC,△ABD,△BPC,△PDC,△BDC,共5個.

(2)證明:∵AB+AD>BD,PD+CD>PC,
∴AB+AD+PD+CD>BD+PC,
∴AB+AD+PD+CD>BP+PD+PC,
∴AB+AC>PB+PC.
點評:此題主要考查了三角形的三邊關(guān)系,關(guān)鍵是掌握三角形三邊關(guān)系定理:三角形兩邊之和大于第三邊.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖點P是∠ABC內(nèi)一點畫圖:
①過點P作BC的垂線,D是垂足;
②過點P作BC的平行線交AB于E,過點P作AB的平行線交BC于F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,O是△ABC內(nèi)任意一點,AD=
1
3
AO,BE=
1
3
BO,CF=
1
3
CO,則△ABC與△DEF的周長比為( 。
A、1:3B、3:2
C、3:1D、2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,O是△ABC內(nèi)任意一點,D、E、F分別為 AO、BO、CO上的點,且△ABC與△DEF是位似三角形,位似中心為O.若AD=
13
AO,則△ABC與△DEF的位似比為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,D是△ABC內(nèi)一點,AD=6,BC=4,E,F(xiàn),G,H分別是AB,AC,CD,BD的中點,則四邊形EFGH的周長是( 。

查看答案和解析>>

同步練習(xí)冊答案