在Rt△ABC中,∠C=90°,AD是∠BAC的平分線,若BC=20厘米,BD=12厘米,則點D到AB的距離是( )
A.7.5cm
B.8cm
C.12cm
D.12.5cm
【答案】分析:首先根據(jù)題意作圖,然后過點D作DE⊥AB于E,由在Rt△ABC中,∠C=90°,AD是∠BAC的平分線,即可得DE=CD,又由BC=20厘米,BD=12厘米,即可求得DE的長,即可得點D到AB的距離.
解答:解:過點D作DE⊥AB于E,
∵在Rt△ABC中,∠C=90°,
∴CD⊥AC,
∵AD是∠BAC的平分線,
∴DE=CD,
∵BC=20厘米,BD=12厘米,
∴CD=BC-BD=8厘米,
∴DE=8厘米,
即點D到AB的距離是8cm.
故選B.
點評:此題考查了角平分線的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案