(滿分l2分)如圖,A,B兩城市相距100 km.現(xiàn)計劃在這兩座城市間修筑一條高速公路(即線段AB),經(jīng)測量,森林保護(hù)中心P在A城市的北偏東30°和B城市的北偏西45°的方向上.已知森林保護(hù)區(qū)的范圍在以P點為圓心,50 km為半徑的圓形區(qū)域內(nèi).請問:計劃修筑的這條高速公路會不會穿越保護(hù)區(qū)?為什么?(參考數(shù)據(jù):≈1.732,≈1.414)
解:過點P作PQ⊥AB于Q,則有∠APQ=30°,∠BPQ=45°.          ……3分
設(shè)PQ=x,則PQ=BQ=x,AP=2AQ=2(100一x).                            ……5分
在Rt△APQ中,
∵tan∠APQ=tan30°=.即                          ……8分
∴x=50(3-).                                                  ……10分
又∵50(3-)≈63.4>50,∴計劃修筑的這條高速公路不會穿越保護(hù)區(qū). ……l2分解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)如圖,直線l1的解析表達(dá)式為:,且l1與x軸

交于點D,直線l2經(jīng)過點AB,直線l1,l2交于點C.

1.(1)求直線l2的函數(shù)關(guān)系式;

2.(2)求△ADC的面積;

3.(3)若點H為坐標(biāo)平面內(nèi)任意一點,在坐標(biāo)平面內(nèi)是否存在這樣的點H,使以A、D、CH為頂點的四邊形是平行四邊形?若存在,請直接寫出點H的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)如圖,直線l1的解析表達(dá)式為:,且l1與x軸
交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C.
【小題1】(1)求直線l2的函數(shù)關(guān)系式;
【小題2】(2)求△ADC的面積;
【小題3】(3)若點H為坐標(biāo)平面內(nèi)任意一點,在坐標(biāo)平面內(nèi)是否存在這樣的點H,使以A、D、C、H為頂點的四邊形是平行四邊形?若存在,請直接寫出點H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省揚州市武堅中學(xué)八年級第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)如圖,直線l1的解析表達(dá)式為:,且l1與x軸
交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C.
【小題1】(1)求直線l2的函數(shù)關(guān)系式;
【小題2】(2)求△ADC的面積;
【小題3】(3)若點H為坐標(biāo)平面內(nèi)任意一點,在坐標(biāo)平面內(nèi)是否存在這樣的點H,使以A、DC、H為頂點的四邊形是平行四邊形?若存在,請直接寫出點H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣西欽州卷)數(shù)學(xué) 題型:解答題

(本題滿分9分)如圖①,小慧同學(xué)把一個正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片繞著頂點A按順時針方向旋轉(zhuǎn)120°,此時點O運動到了點O1處,點B運動到了點B1處;小慧又將三角形紙片AO1B1繞點B1按順時針方向旋轉(zhuǎn)120°,此時點A運動到了點A1處,點O1運動到了點O2處(即頂點O經(jīng)過上述兩次旋轉(zhuǎn)到達(dá)O2處).
小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過程中,頂點O運動所形成的圖形是兩段
圓弧,即,頂點O所經(jīng)過的路程是這兩段圓弧的長度之和,并且這兩段圓弧
與直線l1圍成的圖形面積等于扇形AOO1的面積、△AO1B1的面積和扇形B1O1O2的面積之
和.
小慧進(jìn)行類比研究:如圖②,她把邊長為1的正方形紙片OABC放在直線l2上,OA
邊與直線l2重合,然后將正方形紙片繞著頂點^按順時針方向旋轉(zhuǎn)90°,此時點O運動到
了點O1處(即點B處),點C運動到了點C1處,點B運動到了點B1處;小慧又將正方形
紙片AO1C1B1繞頂點B1按順時針方向旋轉(zhuǎn)90°,……,按上述方法經(jīng)過若干次旋轉(zhuǎn)后.她
提出了如下問題:
問題①:若正方形紙片OABC接上述方法經(jīng)過3次旋轉(zhuǎn),求頂點O經(jīng)過的路程,并
求頂點O在此運動過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OA BC
按上述方法經(jīng)過5次旋轉(zhuǎn),求頂點O經(jīng)過的路程;
問題②:正方形紙片OABC按上述方法經(jīng)過多少次旋轉(zhuǎn),頂點O經(jīng)過的路程是
?
請你解答上述兩個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣西欽州卷)數(shù)學(xué) 題型:解答題

(本題滿分9分)如圖①,小慧同學(xué)把一個正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片繞著頂點A按順時針方向旋轉(zhuǎn)120°,此時點O運動到了點O1處,點B運動到了點B1處;小慧又將三角形紙片AO1B1繞點B1按順時針方向旋轉(zhuǎn)120°,此時點A運動到了點A1處,點O1運動到了點O2處(即頂點O經(jīng)過上述兩次旋轉(zhuǎn)到達(dá)O2處).

    小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過程中,頂點O運動所形成的圖形是兩段

圓弧,即,頂點O所經(jīng)過的路程是這兩段圓弧的長度之和,并且這兩段圓弧

與直線l1圍成的圖形面積等于扇形AOO1的面積、△AO1B1的面積和扇形B1O1O2的面積之

和.

    小慧進(jìn)行類比研究:如圖②,她把邊長為1的正方形紙片OABC放在直線l2上,OA

邊與直線l2重合,然后將正方形紙片繞著頂點^按順時針方向旋轉(zhuǎn)90°,此時點O運動到

了點O1處(即點B處),點C運動到了點C1處,點B運動到了點B1處;小慧又將正方形

紙片AO1C1B1繞頂點B1按順時針方向旋轉(zhuǎn)90°,……,按上述方法經(jīng)過若干次旋轉(zhuǎn)后.她

提出了如下問題:

     問題①:若正方形紙片OABC接上述方法經(jīng)過3次旋轉(zhuǎn),求頂點O經(jīng)過的路程,并

求頂點O在此運動過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OA BC

按上述方法經(jīng)過5次旋轉(zhuǎn),求頂點O經(jīng)過的路程;

     問題②:正方形紙片OABC按上述方法經(jīng)過多少次旋轉(zhuǎn),頂點O經(jīng)過的路程是

?

       請你解答上述兩個問題.

 

查看答案和解析>>

同步練習(xí)冊答案