【題目】如果一個多邊形的各邊都相等,且各內(nèi)角也都相等,那么這個多邊形就叫做正多邊形.如圖,就是一組正多邊形,觀察每個正多邊形中∠α的變化情況,解答下列問題:
(1)將下面的表格補充完整:
正多邊形邊數(shù) | 3 | 4 | 5 | 6 | … | n |
∠α的度數(shù) | 60° | 45° |
|
| … |
|
(2)根據(jù)規(guī)律,是否存在一個正多邊形,其中的∠α=21°?若存在,請求出n的值,若不存在,請說明理由.
【答案】(1)36°,30°,;(2)不存在,理由見解析.
【解析】
(1)根據(jù)多邊形內(nèi)角和公式求出多邊形每個內(nèi)角的度數(shù),再根據(jù)三角形內(nèi)角和定理求出即可;
(2)根據(jù)(1)中得出的規(guī)律,列方程求解即可;
解:(1)當正多邊形有5條邊時,每個內(nèi)角度數(shù)=(5-2) ×180°÷5=108°,則∠α=(180°-108°) ÷2=36°=180°÷5;
當正多邊形有6條邊時,每個內(nèi)角度數(shù)=(6-2) ×180°÷6=120°,則∠α=(180°-120°) ÷2=30°=180°÷6;
由以上兩個式子可知,當正多邊形有n條邊時,每個內(nèi)角度數(shù);
填寫下表:
正多邊形邊數(shù) | 3 | 4 | 5 | 6 | … | n |
∠α的度數(shù) | 60° | 45° | 36° | 30° | … | ()° |
(2)不存在,理由如下:
設存在正n邊形使得∠α=21°,
得∠α=21°=()°.
解得:n=8,n是正整數(shù),n=8(不符合題意要舍去),
不存在正n邊形使得∠α=21°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在A左側的一點,且A,B兩點間的距離為10.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為t(t>0)秒.
(1)數(shù)軸上點B表示的數(shù)是 ,點P表示的數(shù)是 (用含t的代數(shù)式表示);
(2)動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā).求:
①當點P運動多少秒時,點P與點Q相遇?
②當點P運動多少秒時,點P與點Q間的距離為8個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC= ;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長;
(3)如圖3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之間距離是否有最大值?如有求出最大值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】公園的門票價格規(guī)定如下表:
購票張數(shù) | 1 到 50 張 | 51 到 100 張 | 101 到 150張 | 150 張以上 |
每張票的價格 | 12 元 | 10 元 | 8 元 | 超過 150 張的部分 7 元 |
某校七年級(1)(2)兩個班共 104 人,其中(1)班 40 多人,不足 50 人,經(jīng)估算,如果兩個班都以班為單位購票,則一共應付 1136 元,問:
(1)若兩班聯(lián)合起來作為一個團體購票,可省多少錢?
(2)兩班學生各有多少人?
(3)若七年級(3)班有 n 人(46<n<55)與(1),(2)班一起去游園,某商家贊助,支付三個班的所有門票費,則該商家最少花費 元(用含 n 的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知點A (﹣2,4)和點B (1,0)都在拋物線y=mx2+2mx+n上.
(1)求m、n;
(2)向右平移上述拋物線,記平移后點A的對應點為A′,點B的對應點為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達式;
(3)記平移后拋物線的對稱軸與直線AB′的交點為點C,試在x軸上找點D,使得以點B′、C、D為頂點的三角形與△ABC相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的邊AB在x軸上,點C的坐標為(﹣5,4),點D在y軸的正半軸上,經(jīng)過點A的直線y=x﹣1與y軸交于點E,將直線AE沿y軸向上平移n(n>0)個單位長度后,得到直線l,直線l經(jīng)過點C時停止平移.
(1)點A的坐標為 ,點B的坐標為 ;
(2)若直線l交y軸于點F,連接CF,設△CDF的面積為S(這里規(guī)定:線段是面積為0的三角形),求S與n之間的函數(shù)關系式,并寫出n的取值范圍;
(3)易知AE⊥AD于點A,若直線l交折線AD﹣DC于點P,當△AEP為直角三角形時,請直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個長方形紙條ABCD,點P,Q是線段CD上的兩個動點,且點P始終在點Q左側,在AB上有一點O,連結PO、QO,以PO,QO為折痕翻折紙條,使點A、點B、點C、點D分別落在點A’、點B’、點C’、點D’上.
(1)當時,=_______
(2)當A’O與B’O重合時,=_________.
(3)當時,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:若一個四邊形的兩條對角線相等,則稱這個四邊形為等對角線四邊形.請解答下列問題:
(1)寫出你所學過的特殊四邊形中是等對角線四邊形的兩種圖形的名稱;
(2)探究:當?shù)葘蔷四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和與其中一條對角線的大小關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,把△ABC 先沿 x 軸翻折,再向右平移 3 個單位得到△ABC 現(xiàn)把這兩步 操作規(guī)定為一種變換.如圖,已知等邊三角形 ABC 的頂點 B、C 的坐標分別是(1,1)、(3,1), 把三角形經(jīng)過連續(xù) 5 次這種變換得到三角形△ABC,則點 A 的對應點 A 的坐標是( )
A.(5,﹣)B.(14,1+)C.(17,﹣1﹣)D.(20,1+)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com