【題目】已知:如圖,在ABC中,AB=AC,以AC為直徑作⊙OBC于點(diǎn)D,過點(diǎn)D作⊙O的切線交AB于點(diǎn)E,交AC的延長線于點(diǎn)F

1)求證:DEAB;

2tanBDE=, CF=3,求DF的長.

【答案】1見解析;(26

【解析】試題分析:連接OD,則有OD⊥EF,然后證明OD//AB即可得;

(2)連接AD,則有∠ADB=90°,通過證明△FCD∽△FDA ,可得 FC:FD=CD:DA,再根據(jù)tanBDE= ,通過推導(dǎo)即可得

試題解析:(1)連接ODEF切⊙O于點(diǎn)DODEF

又∵OD=OC,ODC=OCD,

AB=ACABC=OCD,ABC=ODC

ABOD,DEAB

2連接AD

AC為⊙O的直徑,ADB=90°, B+BDE=90°,B+1=90°,

BDE=∠1,

AB=AC1=2,又∵BDE =3,2=3,

FCDFDA ,

tanBDE=,tan2= ,

,

CF=3,FD=6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

(1)請寫出△ABC各點(diǎn)的坐標(biāo)

(2)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A′B′C′,寫出 A′、B′、C′的坐標(biāo),并在圖中畫出平移后圖形

(3)求出三角形ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程

1)求證:無論k取何值,該方程總有實(shí)數(shù)根;

2)若等腰的一邊長,另兩邊b、c恰好是該方程的兩個(gè)根,求的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校對學(xué)生暑假參加志愿服務(wù)的時(shí)間進(jìn)行抽樣調(diào)查,將收集的數(shù)據(jù)分成、、五組進(jìn)行整理,并繪制成如下的統(tǒng)計(jì)圖表(圖中信息不完整).

分組統(tǒng)計(jì)表

組別

志愿服務(wù)時(shí)間(時(shí))

人數(shù)

A

B

40

C

D

E

16

請結(jié)合以上信息解答下列問題

1)求、的值;

2)補(bǔ)全人數(shù)分組統(tǒng)計(jì)圖①中組的人數(shù)和圖②組和組的比例值;

3)若全校學(xué)生人數(shù)為800人,請估計(jì)全校參加志愿服務(wù)時(shí)間在的范圍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEBF,AC平分∠BAD,且交BF于點(diǎn)C,BD平分∠ABC,且交AE于點(diǎn)D,連接CD,求證:

1ACBD;

2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O0,0),點(diǎn)B0,1)是第一個(gè)正方形OBB1C的兩個(gè)頂點(diǎn),以它的對角線OB1為一邊作第二個(gè)正方形OB1B2C1,以正方形OB1B2C1的對角線OB2為一邊作第三個(gè)正方形OB2B3C2,再以正方形OB2B3C2的對角線OB3為一邊作第四個(gè)正方形OB3B4C3以此規(guī)律作下去,點(diǎn)B2014的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校提倡練字,小冬和小紅一起去文具店買鋼筆和字帖,小冬在文具店買1支鋼筆和3本字帖共花了38元,小紅買了2支鋼筆和4本字帖共花了64元.

1)每支鋼筆與每本字帖分別多少元?

2)帥帥在六一節(jié)當(dāng)天去買,正巧碰到文具店搞促銷,促銷方案有兩種形式:

①所購商品均打九折

②買一支鋼筆贈送一本字帖

帥帥要買5支鋼筆和15本字帖,他有三種選擇方案:

)一次買5支鋼筆和15本字帖,然后按九折付費(fèi);

)一次買5支鋼筆和10本字帖,文具店再贈送5本字帖;

)分兩次購買,第一次買5支鋼筆,文具店會贈送5本字帖,第二次再去買10本字帖,可以按九折付費(fèi);問帥帥最少要付多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知B,C,E三點(diǎn)在同一條直線上,△ABC與△DCE都是等邊三角形,其中線段BD交AC于點(diǎn)G,線段AE交CD于點(diǎn)F.求證:(1)△ACE≌△BCD;(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對兩實(shí)數(shù),定義一種新運(yùn)算,規(guī)定.

例如:.

1)填空:________;________.

2)若,求的值.

3)若,為整數(shù),且,求滿足條件的所有的值.

查看答案和解析>>

同步練習(xí)冊答案