【題目】某公司生產(chǎn)某環(huán)保產(chǎn)品的成本為每件40元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn):這件產(chǎn)品在未來(lái)兩個(gè)月的日銷(xiāo)量與時(shí)間的關(guān)系如圖所示未來(lái)兩個(gè)月該商品每天的價(jià)格與時(shí)間的函數(shù)關(guān)系式為:

根據(jù)以上信息,解決以下問(wèn)題:

請(qǐng)分別確定時(shí)該產(chǎn)品的日銷(xiāo)量與時(shí)間之間的函數(shù)關(guān)系式;

請(qǐng)預(yù)測(cè)未來(lái)第一月日銷(xiāo)量利潤(rùn)的最小值是多少?第二個(gè)月日銷(xiāo)量利潤(rùn)的最大值是多少?

為創(chuàng)建“兩型社會(huì)”,政府決定大力扶持該環(huán)保產(chǎn)品的生產(chǎn)和銷(xiāo)售,從第二個(gè)月開(kāi)始每銷(xiāo)售一件該產(chǎn)品就補(bǔ)貼a有了政府補(bǔ)貼以后,第二個(gè)月內(nèi)該產(chǎn)品日銷(xiāo)售利潤(rùn)隨時(shí)間的增大而增大,求a的取值范圍.

【答案】;時(shí),的最大值為元;(3)時(shí),Wt的增大而增大.

【解析】

利用待定系數(shù)法即可解決問(wèn)題;

分別構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;

構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;

解:當(dāng)時(shí),設(shè),則有,

解得,

當(dāng)時(shí),設(shè),則有 ,

解得

由題意,

當(dāng)時(shí),有最小值,

,

時(shí),的最大值為

由題意,

對(duì)稱(chēng)軸,

,

的取值范圍在對(duì)稱(chēng)軸的左側(cè)時(shí)Wt的增大而增大,

當(dāng),

時(shí),Wt的增大而增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,點(diǎn)E在邊CD上,連結(jié)AE、BE.給出下列五個(gè)關(guān)系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤ADBC=AB.將其中的三個(gè)關(guān)系式作為題設(shè),另外兩個(gè)作為結(jié)論,構(gòu)成一個(gè)命題.

用序號(hào)寫(xiě)出一個(gè)真命題(書(shū)寫(xiě)形式如:如果×××,那么××);并給出證明;

用序號(hào)再寫(xiě)出三個(gè)真命題(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】進(jìn)入初中的學(xué)習(xí),除了代數(shù)中學(xué)習(xí)了新的概念有理數(shù),也開(kāi)始了幾何初步的學(xué)習(xí),并且老師強(qiáng)調(diào)幾何內(nèi)容必須帶齊作圖工具,初一年級(jí)的學(xué)生溝通后覺(jué)得到網(wǎng)上買(mǎi)作圖工具更方便更優(yōu)惠些,一套如圖的作圖工具是2.3/套,如果一次買(mǎi)100套以上(不含100套),售價(jià)是2.2/.

(1)列式表示買(mǎi)n套這樣的作圖工具所需錢(qián)數(shù)(注意對(duì)n的大小要有所考慮)

(2)按照這樣的售價(jià)規(guī)定,會(huì)不會(huì)出現(xiàn)多買(mǎi)比少買(mǎi)反而付錢(qián)少的情況?

(3)如果需要買(mǎi)100套,怎樣買(mǎi)更省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,FAD的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=BC,連結(jié)DE,CF。

1)求證:四邊形CEDF是平行四邊形;

2)若AB=4AD=6,∠B=60°,求DE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC為等腰直角三角形,ACB=90,FAC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)FA. C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.

(1)猜想圖1中線(xiàn)段BF、AD的數(shù)量關(guān)系及所在直線(xiàn)的位置關(guān)系,直接寫(xiě)出結(jié)論;

(2)將圖1中的正方形CDEF,繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)任意角度α,得到如圖2的情形。圖2BFAC于點(diǎn)H,交AD于點(diǎn)O,請(qǐng)你判斷(1)中得到的結(jié)論是否仍然成立,并證明你的判斷。

(3)將原題中的等腰直角三角形ABC改為直角三角形ABC,ACB=90,正方形CDEF改為矩形CDEF,如圖3,AC=4,BC=3,CD=,CF=1,BFAC于點(diǎn)H,AD于點(diǎn)O,連接BD、AF,BD2+AF2的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)ABCD,直線(xiàn)分別交,兩點(diǎn),若,分別是的角平分線(xiàn),試說(shuō)明:MENF

解:∵ABCD,(已知)

,(

,分別是的角平分線(xiàn),(已知)

∴∠EMN= AMN

FNM= DNM,(角平分線(xiàn)的定義)

,(等量代換)

MENF,(

由此我們可以得出一個(gè)結(jié)論:兩條平行線(xiàn)被第三條直線(xiàn)所截,一對(duì) 角的平分線(xiàn)互相

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)讀讀做做:平行線(xiàn)是平面幾何中最基本、也是非常重要的圖形.在解決某些平面幾何問(wèn)題時(shí),若能依據(jù)問(wèn)題的需要,添加恰當(dāng)?shù)钠叫芯(xiàn),往往能使證明順暢、簡(jiǎn)潔.請(qǐng)根據(jù)上述思想解決教材中的問(wèn)題:如圖①,ABCD,則∠B+D   E(用填空);

2)倒過(guò)來(lái)想:寫(xiě)出(1)中命題的逆命題,判斷逆命題的真假并說(shuō)明理由.

3)靈活應(yīng)用:如圖②,已知ABCD,在∠ACD的平分線(xiàn)上取兩個(gè)點(diǎn)MN,使得∠AMN=∠ANM,求證:∠CAM=∠BAN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿(mǎn)分為100分.規(guī)定:85x100A級(jí),75x85B級(jí),60x75C級(jí),x60D級(jí).現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:

(1)在這次調(diào)查中,一共抽取了________名學(xué)生,a________%

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為________度;

(4)若該校共有2 000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)小立方塊的六個(gè)面分別標(biāo)有字母A、B、C、D、E、F,從三個(gè)不同方向看到的情形如圖所示,其中AB、C、D、E、F分別代表數(shù)字-2-1、0、1、2、3,則三個(gè)小立方塊的下底面所標(biāo)字母代表的數(shù)字的和為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案