【題目】如圖,在四邊形ABCD中,ADBC,∠ABC=∠ADC,對角線AC、BD交于點OAOBO,DE平分∠ADCBC于點E,連接OE

1)求證:四邊形ABCD是矩形;

2)若AB2,求△OEC的面積.

【答案】1)詳見解析;(21

【解析】

1)證出∠BAD=∠BCD,得出四邊形ABCD是平行四邊形,得出OAOC,OBOD,證出ACBD,即可解決問題;

2)作OFBCF.求出ECOF即可解決問題;

1)證明:∵ADBC

∴∠ABC+BAD180°,∠ADC+BCD180°,

∵∠ABC=∠ADC,

∴∠BAD=∠BCD

∴四邊形ABCD是平行四邊形,

OAOC,OBOD,

OAOB,

ACBD,

∴四邊形ABCD是矩形.

2)解:作OFBCF,如圖所示.

∵四邊形ABCD是矩形,

CDAB2,∠BCD90°,AOCOBODO,ACBD,

AOBOCODO,

BFFC,

OFCD1,

DE平分∠ADC,∠ADC90°,

∴∠EDC45°

RtEDC中,ECCD2

∴△OEC的面積=ECOF1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】浙江實施五水共治以來,越來越重視節(jié)約用水,某地對居民用水按階梯水價方式進行收費,人均月生活用水收費標(biāo)準(zhǔn)如圖所示,圖中x表示人均月生活用水的噸數(shù),y表示收取的人均月生活用水費(元),請根據(jù)圖象信息,回答下列問題.

1)請寫出yx的函數(shù)關(guān)系式;

2)若某個家庭有5人,響應(yīng)節(jié)水號召,計劃控制1月份的生活用水費不超過76元,則該家庭這個月最多可以用多少噸水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,已知格點ABC和格點O

(1)畫出ABC關(guān)于點O對稱的ABC′;

(2)若以點A、OC、D為頂點的四邊形是平行四邊形,則點D的坐標(biāo)為__.(寫出所有可能的結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了增強中學(xué)生的體質(zhì),某校食堂每天都為學(xué)生提供一定數(shù)量的水果,學(xué)校李老師為了了解學(xué)生喜歡吃哪種水果,進行了抽樣調(diào)查,調(diào)查分為五種類型:A喜歡吃蘋果的學(xué)生;B喜歡吃桔子的學(xué)生;C.喜歡吃梨的學(xué)生;D.喜歡吃香蕉的學(xué)生;E喜歡吃西瓜的學(xué)生,并將調(diào)查結(jié)果繪制成圖1和圖2 的統(tǒng)計圖(不完整).請根據(jù)圖中提供的數(shù)據(jù)解答下列問題:

(1)求此次抽查的學(xué)生人數(shù);

(2)將圖2補充完整,并求圖1中的

(3)現(xiàn)有5名學(xué)生,其中A類型2名,B類型2名,從中任選2名學(xué)生參加很體能測試,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+2x+k+1x軸交與A、B兩點,與y軸交與點C(0,-3).

(1)求拋物線的對稱軸及k的值;

(2)求拋物線的對稱軸上存在一點P,使得PA+PC的值最小,求此時點P的坐標(biāo);

(3)M是拋物線上的一動點,且在第三象限.

當(dāng)M點運動到何處時,△AMB的面積最大?求出△AMB的最大面積及此時點M的坐標(biāo).

當(dāng)M點運動到何處時,四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,ADBC,垂足為點D,AN是ABC外角CAM的平分線,CEAN,垂足為點E,連接DE交AC于點F.

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

(3)在(2)的條件下,若AB=AC=2,求正方形ADCE周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,下列結(jié)論中錯誤的有(  )

①當(dāng)ABBC時,它是菱形;②當(dāng)ACBD時,它是菱形;③當(dāng)∠ABC90°時,它是矩形;④當(dāng)ACBD時,它是正方形.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷店為廠家代銷一種新型環(huán)保水泥,當(dāng)每噸售價為260元時,月銷售量為45噸,每售出1噸這種水泥共需支付廠家費用和其他費用共100元.該經(jīng)銷店為擴大銷售量、提高經(jīng)營利潤,計劃采取降價的方式進行促銷,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)每噸售價每下降10元時,月銷售量就會增加7.5噸.

(1)當(dāng)每噸售價是240元時,此時的月銷售量是多少噸.

(2)該經(jīng)銷店計劃月利潤為9000元而且盡可能地擴大銷售量,則售價應(yīng)定為每噸多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH內(nèi)接于△ABC,且邊FG落在BC上,若ADBC,BC3,AD2,EFEH

(1)求證:△AEH∽△ABC;

(2)求矩形EFGH的面積.

查看答案和解析>>

同步練習(xí)冊答案