如圖四邊形ABCD是正方形,M是AB延長線上一點。直角三角尺的一條直角邊經(jīng)過點D,且直角頂點E在AB邊上滑動(點E不與點A,B重合),另一條直角邊與∠CBM的平分線BF相交于點F。

(1)如圖,當(dāng)點E在AB邊的中點位置時:

①通過測量DE,EF的長度,猜想DE與EF滿足的數(shù)量關(guān)系是        ;

②連接點E與AD邊的中點N,猜想NE與BF滿足的數(shù)量關(guān)系是           ;

③請證明你的上述兩猜想;

(2)如圖,當(dāng)點E在AB邊上的任意位置時,請你在AD邊上找到一點N,使得NE=BF,進(jìn)而猜想并證明此時DE與EF有怎樣的數(shù)量關(guān)系。

 

 

【答案】

(1)①DE=EF;②NE=BF;③根據(jù)正方形的性質(zhì)及N,E分別為AD,AB的中點可得DN=EB,再根據(jù)角平分線的性質(zhì)及AN=AE可得∠DNE=∠EBF=135°,再根據(jù)同角的余角相等證得∠NDE=∠BEF,即可證得△DNE≌△EBF,從而證得結(jié)論;(2)DE=EF

【解析】

試題分析:(1)根據(jù)正方形的性質(zhì)及N,E分別為AD,AB的中點可得DN=EB,再根據(jù)角平分線的性質(zhì)及AN=AE可得∠DNE=∠EBF=135°,再根據(jù)同角的余角相等證得∠NDE=∠BEF,即可證得△DNE≌△EBF,從而證得結(jié)論;

(2)在DA邊上截取DN=EB,連結(jié)NE,點N就使得NE=BF成立,由DN=EB可得AN=AE,根據(jù)角平分線的性質(zhì)可得∠DNE=∠EBF=90°+45°=135°,再根據(jù)同角的余角相等證得∠NDE=∠BEF,即可證得△DNE≌△EBF,從而證得結(jié)論.

(1)①DE=EF;

②NE=BF;

③∵四邊形ABCD是正方形,N,E分別為AD,AB的中點,

∴DN=EB

∵BF平分∠CBM,AN=AE,

∴∠DNE=∠EBF=90°+45°=135°

∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,

∴∠NDE=∠BEF

∴△DNE≌△EBF

∴DE=EF;

(2)在DA邊上截取DN=EB,連結(jié)NE,點N就使得NE=BF成立,此時,DE="EF"

∵DN="EB"

∴DA-DN="AB-BE" 即AN=AE

∵BF平分∠CBM,AN=AE,

∴∠DNE=∠EBF=90°+45°=135°

∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,

∴∠NDE=∠BEF

∴△DNE≌△EBF

∴ DE=EF,NE=BF.

考點:動點問題的綜合題

點評:此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖四邊形ABCD是一塊草坪,量得四邊長AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求這塊草坪的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖四邊形ABCD是⊙O的內(nèi)接四邊形,AB是⊙O的直徑,若再增加一個條件,就可使四邊形ABCD成為等腰梯形,你所增加的條件是(只寫出一個條件,圖中不再增加其他的字母和線段.(給出證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖四邊形ABCD是用7根相同的火柴棒首尾順次相接圍成的梯形,設(shè)火柴棒的長度為1,延長AD、BC交于P,若這7根火柴全部保持原位置不動,在PD、PC處能否再添加幾根與前面完全相同的火柴棒,使添加的火柴棒在全部用完且不可折的條件下剛好首尾相接拼成△PAB?若不能拼成,請求出梯形ABCD的面積;若能拼成,請求出所添加的火柴棒的總根數(shù),并求出△PDC和△PAB的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個結(jié)論中正確的是( 。
①若菱形ABCD的邊長為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2
3
時,菱形ABCD的邊長為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖四邊形ABCD是正方形,點E、F分別在線段BC、DC上,∠BAE=30°.若線段AE繞點A逆時針旋轉(zhuǎn)后與線段AF重合,則旋轉(zhuǎn)的角度是( 。

查看答案和解析>>

同步練習(xí)冊答案