已知△ABC的三邊長a、b、c滿足
a-2
+|b-2
2
|+(c-2)2=0,則△ABC一定是
等腰直角
等腰直角
三角形.
分析:先根據(jù)非負數(shù)的性質求出a、b、c的值,再根據(jù)勾股定理的逆定理進行解答即可.
解答:解:∵△ABC的三邊長a、b、c滿足
a-2
+|b-2
2
|+(c-2)2=0,
∴a-2=0,b-2
2
=0,c-2=0,
∴a=2,b=2
2
,c=2,
∵22+22=(2
2
2,
∴△ABC一定是等腰直角三角形.
故答案為:等腰直角.
點評:本題考查的是勾股定理的逆定理,熟知如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、已知△ABC的三邊長a,b,c分別為6,8,10,則△ABC
(請?zhí)睢笆恰被颉安皇恰保┲苯侨切危?/div>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC的三邊長分別為20cm,50cm,60cm,現(xiàn)在有長度分別為10cm和30cm的木條各一根,要做一個三角形木架與已知三角形相似,那么第三根木條的長度應為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC的三邊長2,4,5,△A'B'C'其中的兩邊長分別為1和2,若△ABC∽△A'B'C',那么△A'B'C'的第三邊長應該是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC的三邊長a、b、c滿足
a-2
+|b-2|+(c-
8
)2=0
,則△ABC一定是
等腰直角
等腰直角
三角形.

查看答案和解析>>

同步練習冊答案