【題目】小東同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),對(duì)函數(shù)y 進(jìn)行了探究,下面是他的探究過(guò)程:
(1)已知x=-3時(shí) 0;x=1 時(shí) 0,化簡(jiǎn):
①當(dāng)x<-3時(shí),y= ;
②當(dāng)-3≤x≤1時(shí),y= ;
③當(dāng)x>1時(shí),y= .
(2)在平面直角坐標(biāo)系中畫(huà)出y=|x﹣1|+|x+3|的圖象,根據(jù)圖象,寫(xiě)出該函數(shù)的一條性質(zhì): ;
【答案】(1)①﹣2﹣2x;②4;③2x+2;(2)畫(huà)出圖象見(jiàn)解析;函數(shù)圖象不過(guò)原點(diǎn).
【解析】
(1)根據(jù)已知條件及絕對(duì)值的化簡(jiǎn)法則計(jì)算即可;
(2)畫(huà)出函數(shù)圖象,則易得一條函數(shù)性質(zhì);
解:(1)∵x=﹣3時(shí)|x+3|=0;x=1時(shí)|x﹣1|=0
∴當(dāng)x<﹣3時(shí),y=1﹣x﹣x﹣3=﹣2﹣2x;
②當(dāng)﹣3≤x≤1時(shí),y=1﹣x+x+3=4;
③當(dāng)x>1時(shí),y=x﹣1+x+3=2x+2;
故答案為:﹣2﹣2x;4;2x+2.
(2)在平面直角坐標(biāo)系中畫(huà)出y=|x﹣1|+|x+3|的圖象,如圖所示:
根據(jù)圖象,該函數(shù)圖象不過(guò)原點(diǎn).
故答案為:函數(shù)圖象不過(guò)原點(diǎn);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】發(fā)現(xiàn)任意三個(gè)連續(xù)的整數(shù)中,最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差是4的倍數(shù);
驗(yàn)證:(1) 的結(jié)果是4的幾倍?
(2)設(shè)三個(gè)連續(xù)的整數(shù)中間的一個(gè)為n,計(jì)算最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差,并說(shuō)明它是4的倍數(shù);
延伸:說(shuō)明任意三個(gè)連續(xù)的奇數(shù)中,最大的數(shù)與最小的數(shù)這兩個(gè)數(shù)的平方差是8的倍數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD、AE分別是∠BAC與∠BAC的外角的平分線(xiàn),BE⊥AE.求證:AB=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解放中學(xué)為了了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)四類(lèi)電視節(jié)目的喜愛(ài)程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給的信息解答下列問(wèn)題.
(1)喜愛(ài)動(dòng)畫(huà)的學(xué)生人數(shù)和所占比例分別是多少?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計(jì)該校喜歡體育的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列方程的特征及其解的特點(diǎn).
①x+=-3的解為x1=-1,x2=-2;
②x+=-5的解為x1=-2,x2=-3;
③x+=-7的解為x1=-3,x2=-4.
解答下列問(wèn)題:
(1)請(qǐng)你寫(xiě)出一個(gè)符合上述特征的方程為________,其解為________;
(2)根據(jù)這類(lèi)方程的特征,寫(xiě)出第n個(gè)方程為________,其解為________;
(3)請(qǐng)利用(2)的結(jié)論,求關(guān)于x的方程x+=-2(n+2)(其中n為正整數(shù))的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1: ,高為DE,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中A、C、E在同一直線(xiàn)上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)O是AB的中點(diǎn),且OC=OD.
(1)求證:平行四邊形ABCD是矩形;
(2)若AD=3,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,平行四邊形ABCD和平行四邊形CDEF有公共邊CD,邊AB和EF在同一條直線(xiàn)上,AC⊥CD且AC=AF,過(guò)點(diǎn)A作AH⊥BC交CF于點(diǎn)G,交BC于點(diǎn)H,連接EG.
(1)若AE=2,CD=5,則△BCF的面積為 ;△BCF的周長(zhǎng)為 ;
(2)求證:BC=AG+EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,DE∥AB,DF∥AC.
(1)求證:∠A=∠EDF.
(2)點(diǎn)G是線(xiàn)段AC上的一點(diǎn),連接FG,DG.
①若點(diǎn)G是線(xiàn)段AE的中點(diǎn),請(qǐng)你在圖2中補(bǔ)全圖形,判斷∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系,并證明.
②若點(diǎn)G是線(xiàn)段EC上的一點(diǎn),請(qǐng)你直接寫(xiě)出∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com