(2009•柳州)如圖,正方形網(wǎng)格中,△ABC為格點三角形(頂點都是格點),將△ABC繞點A按逆時針方向旋轉(zhuǎn)90°得到△AB1C1
(1)在正方形網(wǎng)格中,作出△AB1C1;(不要求寫作法)
(2)設(shè)網(wǎng)格小正方形的邊長為1cm,用陰影表示出旋轉(zhuǎn)過程中線段BC所掃過的圖形,然后求出它的面積.(結(jié)果保留π).

【答案】分析:(1)根據(jù)網(wǎng)格圖知:AB=4,BC=3,由勾股定理得,AC=5,作B1A⊥AB,且B1A=AB,作C1A⊥ABC且C1A=AC;
(2)陰影部分的面積等于扇形ACC1與△ABC的面積和減去扇形ABB1與△AB1C1,而△ABC與△AB1C1的面積相等,∴陰影部分的面積等于扇形ACC1減去扇形ABB1的面積.
解答:解:(1)作圖如圖:

(2)線段BC所掃過的圖形如圖所示.
根據(jù)網(wǎng)格圖知:AB=4,BC=3,所以AC=5,
陰影部分的面積等于扇形ACC1與△ABC的面積和減去扇形ABB1與△AB1C1,
故陰影部分的面積等于扇形ACC1減去扇形ABB1的面積,兩個扇形的圓心角都90度.
∴線段BC所掃過的圖形的面積S=π(AC2-AB2)=(cm2).
點評:本題利用了勾股定理,圓的面積公式求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•柳州)如圖,已知拋物線y=ax2-2ax-b(a>0)與x軸的一個交點為B(-1,0),與y軸的負半軸交于點C,頂點為D.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點A的坐標;
(2)以AD為直徑的圓經(jīng)過點C.
①求拋物線的解析式;
②點E在拋物線的對稱軸上,點F在拋物線上,且以B,A,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省梅州市數(shù)學總復習測試卷(12) 綜合二(解析版) 題型:解答題

(2009•柳州)如圖,已知拋物線y=ax2-2ax-b(a>0)與x軸的一個交點為B(-1,0),與y軸的負半軸交于點C,頂點為D.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點A的坐標;
(2)以AD為直徑的圓經(jīng)過點C.
①求拋物線的解析式;
②點E在拋物線的對稱軸上,點F在拋物線上,且以B,A,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省河源市數(shù)學總復習測試卷(12) 綜合二(解析版) 題型:解答題

(2009•柳州)如圖,已知拋物線y=ax2-2ax-b(a>0)與x軸的一個交點為B(-1,0),與y軸的負半軸交于點C,頂點為D.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點A的坐標;
(2)以AD為直徑的圓經(jīng)過點C.
①求拋物線的解析式;
②點E在拋物線的對稱軸上,點F在拋物線上,且以B,A,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣西柳州市中考數(shù)學試卷(解析版) 題型:解答題

(2009•柳州)如圖,已知拋物線y=ax2-2ax-b(a>0)與x軸的一個交點為B(-1,0),與y軸的負半軸交于點C,頂點為D.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點A的坐標;
(2)以AD為直徑的圓經(jīng)過點C.
①求拋物線的解析式;
②點E在拋物線的對稱軸上,點F在拋物線上,且以B,A,F(xiàn),E四點為頂點的四邊形為平行四邊形,求點F的坐標.

查看答案和解析>>

同步練習冊答案