【題目】如圖.在ABC中,∠ACB=60°,AC=1,D是邊AB的中點(diǎn),E是邊BC上一點(diǎn).若DE平分ABC的周長,則DE的長是_____

【答案】

【解析】如圖,延長BCM,使CM=CA,連接AM,作CNAMN,根據(jù)題意得到ME=EB,根據(jù)三角形中位線定理得到DE=AM,根據(jù)等腰三角形的性質(zhì)求出∠ACN,根據(jù)正弦的概念求出AN,計(jì)算即可.

如圖,延長BCM,使CM=CA,連接AM,作CNAMN,

DE平分ABC的周長, AD=DB,

BE=CE+AC,

ME=EB,

AD=DB,

DE=AM,DEAM,

∵∠ACB=60°,

∴∠ACM=120°,

CM=CA,

∴∠ACN=60°,AN=MN,

AN=ACsinACN=

AM=,

DE=,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:用分離系數(shù)法進(jìn)行整式的加減運(yùn)算.

我們已經(jīng)學(xué)過整式的加減,而我們可以列豎式進(jìn)行整式的加減運(yùn)算,只要將參加運(yùn)算的整式連同字母進(jìn)行降冪排列,凡缺項(xiàng)則留出空位或添零,然后讓常數(shù)項(xiàng)對(duì)齊(即右對(duì)齊)即可.例如,計(jì)算(x32x25)﹣(x2x21)時(shí),我們可以用下列豎式計(jì)算:

豎式:

x32x2+5)﹣(x2x21)=x3x4

這種方法叫做分離系數(shù)法.用分離系數(shù)法計(jì)算:

1)(2x2+4x3+54x+x2);

2)(3y35y26)﹣(y2+3y3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察以下等式:

將以上三個(gè)等式兩邊分別相加得:

1)猜想并寫出:____________

2)直接寫出下列各式的計(jì)算結(jié)果:

_____________;

___________

3)探究并計(jì)算:

4___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線DE上有一點(diǎn)O,過點(diǎn)O在直線DE上方作射線OC,將直角三角板AOB(∠OAB=30°)的直角頂點(diǎn)放在點(diǎn)O處,一條直角邊OA在射線OD上,另一邊OB在直線DE上方.將直角三角板繞點(diǎn)O按每秒10°的速度逆時(shí)針旋轉(zhuǎn)得到三角形A'OB',三角形AOB旋轉(zhuǎn)一周后停止旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時(shí)間為t秒.若射線OC的位置保持不變,COD=40°

1)如圖1,在旋轉(zhuǎn)過程中,當(dāng)邊A'B'與直線DE相交于點(diǎn)F時(shí),請(qǐng)用含t的代數(shù)式分別表示A'OCB'OF的度數(shù),并求出A'OCB'OF的值;

2)如圖2,當(dāng)t=7時(shí),試說明直線A'B'//OC;

3)在旋轉(zhuǎn)過程中,若t=7,是否還存在某一時(shí)刻,使得A'B'//OC;若存在,請(qǐng)求出符合條件的t值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,邊AB、AC的垂直平分線分別交BCE、F,若∠EAF90°,AF3,AE4

1)求邊BC的長;(2)求出∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用對(duì)稱性可設(shè)計(jì)出美麗的圖案.在邊長為1的方格紙中,有如圖所示的四邊形(頂點(diǎn)都在格點(diǎn)上)

(1)先作出該四邊形關(guān)于直線成軸對(duì)稱的圖形,再作出你所作的圖形連同原四邊形繞0點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90o后的圖形;

(2)完成上述設(shè)計(jì)后,整個(gè)圖案的面積等于_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人準(zhǔn)備在一段長為1200m的筆直公路上進(jìn)行跑步,甲、乙跑步的速度分別為4m/s6m/s,起跑前乙在起點(diǎn),甲在乙前面100m處,兩人同時(shí)起跑.

1)兩人出發(fā)后多長時(shí)間乙追上甲?

2)求從起跑至其中一人先到達(dá)終點(diǎn)的過程中,甲、乙兩人之間的距離ym)與時(shí)間ts)的函數(shù)關(guān)系,并畫出ym)與時(shí)間ts)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線交于EBECD于點(diǎn)F,∠1+2=90°

1)試說明:ABCD;

2)若∠2=25°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀思考,完成下列填空.

問題提出:

如圖,圖①是一張由三個(gè)邊長為1的小正方形組成的形紙片.圖②是張的方格紙(的方格紙指邊長分別為的長方形,被分成個(gè)邊長為1的小正方形,其中,且為正整數(shù)).把圖①放置在圖②中.使它恰好蓋住圖②中的三個(gè)小正方形,共有多少種不同的放置方法?

問題探究;

探究一:把圖①放置在的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,如圖③,顯然有4種不同的放置方法.

探究二:把圖①放置在的方格紙中,使它恰好蓋住其中的三個(gè)小正方形.如圖④,的方格紙中,共可以找到2個(gè)位置不同的方格,依據(jù)探究一的結(jié)論可知,把圖①放置在的方格紙中.使它恰好蓋住其中的三個(gè)小正方形,共有_____種不同的放置方法.

探究三:把圖①放置在的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,如圖⑤,在的方格紙中,共可以找到_______個(gè)位置不同的方格,依據(jù)探究一的結(jié)論可知,把圖①放置在的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有________種不同的放置方法.

探究四:把圖①放置在的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,如圖⑥,的方格紙中,共可以找到_______個(gè)位置不同的方格,依據(jù)探究一的結(jié)論可知,把圖①放置在的方格紙中,使它恰好蓋住其中的三個(gè)小正方形共有________種不同的放置方法.

……

問題解決:

把圖①放置在的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有_________種不同的放置方法.

查看答案和解析>>

同步練習(xí)冊(cè)答案