【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,ABC的頂點均在格點上,點B的坐標為(1,0).

(1)畫出ABC關于x軸對稱的A1B1C1;

(2)畫出將ABC繞原點O按逆時針旋轉90°所得的A2B2C2,并寫出點C2的坐標;

(3)A1B1C1A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標.

【答案】(1)見解析;(2)見解析,點C2的坐標為(1,3);(3)A1B1C1A2B2C2成中心對稱,對稱中心為(

【解析】

(1)作出A、B、C關于x軸的對稱點,然后順次連接即可得到;

(2)A、BC繞原點按逆時針旋轉90度得到對應點,然后順次連接即可得到,根據(jù)圖可寫出C2的坐標;

(3)成中心對稱,連續(xù)各對稱點,連線的交點就是對稱中心,從而可以找出對稱中心的坐標.

(1)如圖所示,A1B1C1即為所求.

(2)如圖所示,A2B2C2即為所求,點C2的坐標為(1,3);

(3)A1B1C1A2B2C2成中心對稱,對稱中心為(,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】兩個全等的等腰直角三角形,斜邊長為2,按如圖放置,其中一個三角形45°角的項點與另一個三角形的直角頂點A重合,若三角形ABC固定,當另一個三角形繞點A旋轉時,它的角邊和斜邊所在的直線分別與邊BC交于點E、F,設BF=CE=關于的函數(shù)圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角ABC中,D、E分別是AB、BC的中點,點FAC上,且滿足∠AFE=ADMEFAC于點M.

1)證明:DM=DA;

2)如圖2,點GBE上,且∠BDG=C,求證:DEG∽△ECF;

3)在圖2中,取CE上一點H,使得∠CFH=B,若BG=3,求EH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為和美三角形,這條邊稱為和美邊,這條中線稱為和美中線

理解:(1)請你在圖①中畫一個以AB為和美邊的和美三角形,使第三個頂點C落在格點上;

     

2)如圖②,在RtABC中,∠C=90°,.求證:ABC和美三角形

運用:(3)已知,等腰ABC和美三角形AB=AC=20,求底邊BC的長(畫圖解答).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)中的xy滿足下表:

x

0

1

2

3

4

5

y

3

0

1

0

m

8

1)可求得m的值為________

2)在坐標系畫出該函數(shù)的圖象;

3)當y≥0時,x的取值范圍為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

已知實數(shù)m,n滿足(2m2n21)(2m2n21)80,試求2m2n2的值.

解:設2m2n2t,則原方程變?yōu)?/span>(t1)(t1)80,整理得t2180,t281

所以t=土9,因為2m2n20,所以2m2n29.

上面這種方法稱為換元法,把其中某些部分看成一個整休,并用新字母代替(即換元),則能使復雜的問題簡單化.

根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.

1)已知實數(shù)x、y,滿足(2x22y23)(2x22y23)27,求x2y2的值.

2)已知RtACB的三邊為a、b、cc為斜邊),其中ab滿足(a2b2)(a2b24)5,求RtACB外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲車從A地到B地,乙車從B地到A地,乙車先出發(fā)先到達,甲乙兩車之間的距離y(千米)與行駛的時間x(小時)的函數(shù)關系如圖所示,則下列說法中不正確的是( 。

A.甲車的速度是80km/hB.乙車的速度是60km/h

C.甲車出發(fā)1h與乙車相遇D.乙車到達目的地時甲車離 B10km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A、C在坐標軸上,點PBC邊上,直線11y=2x+3,直線12y=2x3

1)分別求直線11x軸、直線12AB的交點DE的坐標;

2)已知點M在矩形ABCD內(nèi)部,且是直線12上的點,若△APM是等腰直角三角形,求點M的坐標;

3)我們把直線11和直線12上的點所組成的圖形稱為圖形F.已知矩形ANPQ的頂點N在圖形F上,且在AP的上方,Q是坐標平面內(nèi)的點,設N點的橫坐標為x,請直接寫出x的取值范圍(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:四邊形ABCD中,,,AD=CD,對角線ACBD相交于點O,且BD平分∠ABC,過點A,垂足為H.

(1)求證:

(2)判斷線段BH,DHBC之間的數(shù)量關系;并證明.

查看答案和解析>>

同步練習冊答案