【題目】如圖,一次函數(shù)的圖象與軸,軸分別交于,兩點(diǎn),在軸上有一點(diǎn),動點(diǎn)從點(diǎn)以每秒2個單位長度的速度向左移動,
(1)求直線的表達(dá)式;
(2)求的面積與移動時間之間的函數(shù)關(guān)系式;
(3)當(dāng)為何值時,≌,求出此時點(diǎn)的坐標(biāo).
【答案】(1);(2)當(dāng)時, ;當(dāng)時 (3) 當(dāng)時,P的坐標(biāo)為;當(dāng)時,P的坐標(biāo)為
【解析】
(1)將A,B點(diǎn)代入用待定系數(shù)法即可求解;
(2)先計算出P點(diǎn)到達(dá)原點(diǎn)的時間,然后以此為分界線,分情況討論即可;
(3)根據(jù)全等的性質(zhì)可得出,然后分P在原點(diǎn)的左右兩側(cè)兩種情況討論即可求出P點(diǎn)坐標(biāo).
解(1)設(shè)直線AB的表達(dá)式為
將,兩點(diǎn)代入得
解得
∴AB的表達(dá)式為
(2)
當(dāng)時
當(dāng)時
(3)若≌時
當(dāng) 時, ,此時P的坐標(biāo)為;
當(dāng) 時, ,此時P的坐標(biāo)為;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AD∥BC,AN=CM.
(1)求證:BN=DM;
(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度數(shù)及四邊形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)、、,請回答如下問題:
(1)在坐標(biāo)系內(nèi)描出點(diǎn)的位置:
(2)求出以三點(diǎn)為頂點(diǎn)的三角形的面積;
(3)在軸上是否存在點(diǎn),使以三點(diǎn)為頂點(diǎn)的三角形的面積為10,若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國流傳了上千年的傳統(tǒng)節(jié)日,全國各地舉行了豐富多彩的紀(jì)念活動,為了繼承傳統(tǒng),減緩學(xué)生考前的心理壓力,某班學(xué)生組織了一次拔河比賽,裁判員讓兩隊隊長用“石頭、剪刀、布”的手勢方式選擇場地位置,規(guī)則是:石頭勝剪刀,剪刀勝布,布勝石頭,手勢相同則再決勝負(fù).
(1)用列表或畫樹狀圖法,列出甲、乙兩隊手勢可能出現(xiàn)的情況;
(2)裁判員的這種做法對甲、乙雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)F在AD上,點(diǎn)E在BC上,把這個矩形沿EF折疊后,使點(diǎn)D恰好落在BC邊上的G點(diǎn)處,若矩形面積為且,GE=2BG,則折痕EF的長為( )
A. 4 B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AF∥CE.
(1)說明四邊形ACEF是平行四邊形;(2)當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點(diǎn),,,…在射線上,點(diǎn),,,…在射線上,,,,…均為等邊三角形,若,則的邊長為( )
A.8B.16C.24D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品交易會上,一商人將每件進(jìn)價為 5 元的紀(jì)念品,按每件 9 元出售,每天可售出 32件.他想采用提高售價的辦法來增加利潤,經(jīng)試驗,發(fā)現(xiàn)這種紀(jì)念品每件提價 2 元,每天的銷售量會減少 8 件.
(1)當(dāng)售價定為多少元時,每天的利潤為 140 元?
(2)寫出每天所得的利潤 y(元)與售價 (元/件)之間的函數(shù)關(guān)系式,每件售價定為多少元,才能使一天所得的利潤最大?最大利潤是多少元?(利潤=(售價-進(jìn)價)×售出件數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com