【題目】對(duì)于一次函數(shù)y=﹣2x+1,下列說(shuō)法正確的是(  )

A.圖象分布在第一、二、三象限

B.yx的增大而增大

C.圖象經(jīng)過(guò)點(diǎn)(1,﹣2

D.若點(diǎn)Ax1,y1),Bx2,y2)都在圖象上,且x1x2,則y1y2

【答案】D

【解析】

根據(jù)一次函數(shù)的圖象和性質(zhì),逐一判斷選項(xiàng),即可得到答案.

A、∵k=﹣20,b10,

∴圖象經(jīng)過(guò)第一、二、四象限,故不正確;

B、∵k=﹣2,

yx的增大而減小,故不正確;

C、∵當(dāng)x1時(shí),y=﹣1,

∴圖象不過(guò)(1,﹣2),故不正確;

D、∵yx的增大而減小,

∴若點(diǎn)Ax1y1),Bx2,y2)都在圖象上,且x1x2,則y1y2,故正確;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,l1l2分別表示一種白熾燈和一種節(jié)能燈的費(fèi)用y(元)與照明時(shí)間x(小時(shí))的函數(shù)關(guān)系圖象,假設(shè)兩種燈的使用壽命都是2000小時(shí),照明效果一樣.(費(fèi)用=燈的售價(jià)+電費(fèi))

1)根據(jù)圖象分別求出l1,l2的函數(shù)關(guān)系式;

2)當(dāng)照明時(shí)間為多少時(shí),兩種燈的費(fèi)用相等?

3)小亮房間計(jì)劃照明2500小時(shí),他買(mǎi)了一個(gè)白熾燈和一個(gè)節(jié)能燈,請(qǐng)你幫他設(shè)計(jì)最省錢(qián)的用燈方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是(  )

A.x2x4=x8B.x6÷x3=x2

C.2a2+3a3=5a5D.(2x3)2=4x6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一條彎曲的公路改成直道,可以縮短路程.用幾何知識(shí)解釋其道理正確的是( )

A.兩點(diǎn)確定一條直線 B.垂線段最短

C.兩點(diǎn)之間線段最短 D.三角形兩邊之和大于第三邊

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)人的影子在兩個(gè)相反的方向,這說(shuō)明( 。

A. 他們站在陽(yáng)光下B. 他們站在路燈下

C. 他們站在路燈的兩側(cè)D. 他們站在月光下

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料并回答問(wèn)題:

材料1:如果一個(gè)三角形的三邊長(zhǎng)分別為a,b,c,記,那么三角形的面積為

古希臘幾何學(xué)家海倫(Heron,約公元50年),在數(shù)學(xué)史上以解決幾何測(cè)量問(wèn)題而聞名.他在《度量》一書(shū)中,給出了公式①和它的證明,這一公式稱(chēng)海倫公式

我國(guó)南宋數(shù)學(xué)家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:

下面我們對(duì)公式②進(jìn)行變形:

這說(shuō)明海倫公式與秦九韶公式實(shí)質(zhì)上是同一公式,所以我們也稱(chēng)①為海倫﹣﹣秦九韶公式

問(wèn)題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點(diǎn)分別是D、E、F

(1)求△ABC的面積;

(2)求⊙O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(4,3)、B(4,1),把△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后得到△A1B1C

(1)畫(huà)出△A1B1C,直接寫(xiě)出點(diǎn)A1、B1的坐標(biāo);

(2)求在旋轉(zhuǎn)過(guò)程中,△ABC所掃過(guò)的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商人在一次買(mǎi)賣(mài)中均以120元賣(mài)出兩件衣服,一件賺25%,一件賠25%,在這次交易中,該商人( 。

A. 賺16元 B. 賠16元 C. 不賺不賠 D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C

(1)請(qǐng)判斷:FG與CE的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;

(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫(xiě)出你的判斷

查看答案和解析>>

同步練習(xí)冊(cè)答案