【題目】某汽車公司為了解某型號汽車在同一條件下的耗油情況,隨機抽取了n輛該型號汽車耗油所行使的路程作為樣本,并繪制了以下不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.

根據(jù)題中已有信息,解答下列問題:

1)求n的值,并補全頻數(shù)分布直方圖;

2)若該汽車公司有600輛該型號汽車,試估計耗油所行使的路程低于的該型號汽車的輛數(shù);

3)從被抽取的耗油所行使路程在,這兩個范圍內(nèi)的4輛汽車中,任意抽取2輛,求抽取的2輛汽車來自同一范圍的概率.

【答案】1n=40,圖見解析;(2150輛;(3

【解析】

1)根據(jù)D所占的百分比以及頻數(shù),即可得到n的值;

2)根據(jù)A,B所占的百分比之和乘上該汽車公司有600輛該型號汽車的總數(shù),即可得到結果.

3)從被抽取的耗油所行使路程在的有2輛,記為A,B,行使路程在的有2輛,記為12,任意抽取2輛,利用列舉法即可求出抽取的2輛汽車來自同一范圍的概率.

解:(1n=12÷30%=40(輛),

B40-2-16-12-2=8,

補全頻數(shù)分布直方圖如下:

2=150(輛),

答:耗油所行使的路程低于的該型號汽車的有150輛;

3)從被抽取的耗油所行使路程在的有2輛,記為A,B,行使路程在的有2輛,記為12,任意抽取2輛的可能結果有6種,分別為:

A,1),(A2),(AB),(B1),(B,2),(1,2

其中抽取的2輛汽車來自同一范圍的的結果有2種,

所以抽取的2輛汽車來自同一范圍的的概率P==.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)接到加工糧食任務,要求天加工完噸糧食.該企業(yè)安排甲、乙兩車間共同完成加工任務.乙車間因維修設備,中途停工一段時間,維修設備后提高了加工效率,繼續(xù)加工,直到與甲車間同時完成加工任務為止.設甲、乙兩車間各自加工糧食數(shù)量()與甲車間加工時間()之間的函數(shù)關系如圖①所示;未加工糧食()與甲車間加工時間()之間的函數(shù)關系如圖②所示、請結合圖象解答下列問題:

1)甲車間每天加工糧食 噸, ;

2)求乙車間維修設備后,乙車間加工糧食數(shù)量之間的函數(shù)關系式;

3)求加工噸糧食需要幾天完成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:對于已知的兩個函數(shù),任取自變量的一個值,當時,它們對應的函數(shù)值相等;當時,它們對應的函數(shù)值互為相反數(shù),我們稱這樣的兩個函數(shù)互為相關函數(shù).例如:正比例函數(shù),它的相關函數(shù)為.

1)已知點在一次函數(shù)的相關函數(shù)的圖像上,求的值;

2)已知二次函數(shù).

①當點在這個函數(shù)的相關函數(shù)的圖像上時,求的值;

②當時,求函數(shù)的相關函數(shù)的最大值和最小值.

3)在平面直角坐標系中,點的坐標分別為、,連結.直接寫出線段與二次函數(shù)的相關函數(shù)的圖像有兩個公共點時的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為(1,0),點B的坐標為(0,4),已知點Em,0)是線段DO上的動點,過點EPE⊥x軸交拋物線于點P,交BC于點G,交BD于點H

1)求該拋物線的解析式;

2)當點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;

3)在(2)的條件下,是否存在這樣的點P,使得以PB、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】昌云中學計劃為地理興趣小組購買大、小兩種地球儀,若購買1個大地球儀和3個小地球儀需要136元;若購買2個大地球儀和1個小地球儀需要132元.

1)求每個大地球儀和每個小地球儀各多少元;

2)昌云中學決定購買以上兩種地球儀共30個,總費用不超過960元,那么昌云中學最多可以購買多少個大地球儀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過,,三點.

1)求該拋物線的解析式;

2)經(jīng)過點B的直線交y軸于點D,交線段于點E,若

①求直線的解析式;

②已知點Q在該拋物線的對稱軸l上,且縱坐標為1,點P是該拋物線上位于第一象限的動點,且在l右側.點R是直線上的動點,若是以點Q為直角頂點的等腰直角三角形,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D是射線BC上的一定點,點P是線段AB上一動點,連接PD,作BQ垂直PD,交直線PD于點Q.小騰根據(jù)學習函數(shù)的經(jīng)驗,對線段PBPD,BQ的長度之間的關系進行了探究.下面是小騰的探究過程,請補充完整:

1)對于點PAB上的不同位置,畫圖、測量,得到了線段PB,PD,BQ的長度的幾組值,如表:

位置1

位置2

位置3

位置4

位置5

位置6

位置7

BP/cm

0.00

1.00

2.00

3.00

4.00

5.00

6.00

PD/cm

2.00

1.22

0.98

1.56

2.43

3.38

4.35

BQ/cm

0.00

0.78

1.94

1.82

1.56

1.41

1.31

PBPD,BQ的長度這三個量中,確定   的長度是自變量,   的長度和   的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)的圖象;

3)結合函數(shù)圖象,解決問題:當PDBQ時,PB長度范圍是   cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,兩點之間線段最短,因此,連接兩點間線段的長度叫做兩點間的距離;同理,連接直線外一點與直線上各點的所有線段中,垂線段最短,因此,直線外一點到這條直線的垂線段的長度,叫做點到直線的距離.類似地,連接曲線外一點與曲線上各點的所有線段中,最短線段的長度,叫做點到曲線的距離.依此定義,如圖,在平面直角坐標系中,點到以原點為圓心,以1為半徑的圓的距離為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為獎勵優(yōu)秀學生,某校準備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元.

1)求文具袋和圓規(guī)的單價.

2)學校準備購買文具袋20個,圓規(guī)100個,文具店給出兩種優(yōu)惠方案:

方案一:每購買一個文具袋贈送1個圓規(guī).

方案二:購買10個以上圓規(guī)時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.學校選擇哪種方案更劃算?請說明理由.

查看答案和解析>>

同步練習冊答案