【題目】如圖,正方形紙片ABCD邊長為6,點E,F分別是AB,CD的中點,點G,H分別在AD,AB上,將紙片沿直線GH對折,當(dāng)頂點A與線段EF的三等分點重合時,AH的長為_____

【答案】

【解析】

由題意可知四邊形AEFD是矩形,可得ADEF6,分兩種情況討論,由HM2HE2+EM2,可求AH的長.

解:∵四邊形ABCD是正方形,

ABDC,ADBCABCD6,∠A90°

∵點E,F分別是AB,CD的中點,

AEBE3DFCF,

∴四邊形AEFD是矩形,

ADEF6,

如圖,EMEF2

∵折疊

AHHM,

RtHEM中,HM2HE2+EM2

AH2=(3AH2+4,

AH,

如圖,EMEF4,

∵折疊

AHHM,

RtEHM中,HM2HE2+EM2,

AH2=(AH32+16

AH,

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,將此矩形繞點B順時針方向旋轉(zhuǎn)θ0θ180°)得到矩形A1BC1D1,直線BA1、C1D1分別與直線CD相交于點E、F

1)若此矩形繞點B順時針方向旋轉(zhuǎn)90°,求DD1的長;

2)在旋轉(zhuǎn)過程中,點D、A1、D1三點共線時,求△BCE的面積;

3)在矩形ABCD旋轉(zhuǎn)的過程中,是否存在某個位置使得以B、E、F、D1為頂點的四邊形為平行四邊形?若存在,求出CF的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比函數(shù)的圖象如圖所示.

1)求m的值;

2)當(dāng)x>﹣1時,y的取值范圍是   ;

3)當(dāng)直線y2=﹣x與雙曲線交于AB兩點(AB的左邊)時,結(jié)合圖象,求出在什么范圍時y2y1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三地順次在同-直線上,甲、乙兩人均騎車從地出發(fā),向地勻速行駛.甲比乙早出發(fā)分鐘;甲到達(dá)地并休息了分鐘后,乙追上了甲.甲、乙同時從地以各自原速繼續(xù)向地行駛.當(dāng)乙到達(dá)地后,乙立即掉頭并提速為原速的倍按原路返回地,而甲也立即提速為原速的二倍繼續(xù)向地行駛,到達(dá)地就停止.若甲、乙間的距離()與甲出發(fā)的時間()之間的函數(shù)關(guān)系如圖所示,則下列說法錯誤的是(

A.甲、乙提速前的速度分別為/分、/.

B.兩地相距

C.甲從地到地共用時分鐘

D.當(dāng)甲到達(dá)地時,乙距

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】受非洲豬瘟的影響,2019年的豬肉價格創(chuàng)歷史新高,同時其他肉類的價格也有一定程度的上漲,某超市11月份的豬肉銷量是羊肉銷量的倍,且豬肉價格為每千克元羊肉價格為每千克.

1)若該超市11月份豬肉、羊肉的總銷售額不低于萬元,則11月份的豬肉銷量至少多少千克?

212月份香腸臘肉等傳統(tǒng)美食的制作,使得市場的豬肉需求加大,12月份豬肉的銷量比11月份增長了,由于國家對豬肉價格的調(diào)控,12 月份的豬肉價格比11月份降低了,羊肉的銷量是11月份豬肉銷量的,且價格不變.最終,該超市12月份豬肉和.羊肉的銷售額比11月份這兩種肉的銷售額增加了,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】涌泉鎮(zhèn)是中國無核蜜桔之鄉(xiāng),已知某蜜桔種植大戶馮大爺?shù)拿劢鄢杀緸?/span>2/千克,如果在未來90天蜜桔的銷售單價p(元/千克)與時間t(天)之間的函數(shù)關(guān)系式為p=,且蜜桔的日銷量y(千克)與時間t(天)滿足一次函數(shù)關(guān)系,其部分?jǐn)?shù)據(jù)如下表所示:

時間t/

1

10

20

40

70

90

日銷售量y/千克

105

150

200

300

450

550

1)求yt之間的函數(shù)表達(dá)式;

2)在未來90天的銷售中,預(yù)測哪一天的日銷售利潤最大?最大日銷售利潤為多少元?

3)在實際銷售的后50天中,馮大爺決定每銷售1千克蜜桔就捐贈n元利潤(n5)給留守兒童作為助學(xué)金,銷售過程中馮大爺發(fā)現(xiàn),恰好從第51天開始,和前一天相比,扣除捐贈后的日銷售利潤逐日減少,請求出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點,點,與軸交于點,點與點關(guān)于軸對稱,點軸上的一個動點,設(shè)點的坐標(biāo)為,過點軸的垂線交拋物線于點

1)求點,點,點的坐標(biāo);

2)求直線的解析式;

3)在點的運動過程中,是否存在點,使是以為直角邊的直角三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,將拋物線yax2(﹣1a0)平移到頂點恰好落在直線yx3上,并設(shè)此時拋物線頂點的橫坐標(biāo)為m

1)求拋物線的解析式(用含a、m的代數(shù)式表示)

2)如圖②,RtABC與拋物線交于AD、C三點,∠B90°,ABx軸,AD2,BDBC12

①求ADC的面積(用含a的代數(shù)式表示)

②若ADC的面積為1,當(dāng)2m1≤x≤2m+1時,y的最大值為﹣3,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點的坐標(biāo)為,過點軸的垂線交過原點與軸夾角為的直線于點,以原點為圓心,的長為半徑畫弧交軸正半軸于點;再過點軸的垂線交直線于點,以原點為圓心,以的長為半徑畫弧交軸正半軸于點……按此做法進行下去,則點的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊答案