【題目】在四邊形ABCD,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是(  ).

A. ABDC,ADBCB. AB=DC,AD=BC

C. AO=CO,BO=DOD. ABDC,AD=BC

【答案】D

【解析】

直接根據(jù)平行四邊形的判定定理求解即可求得答案.注意掌握排除法在選擇題中的應(yīng)用.

解:如圖:

A、∵ABDC ADBC,
∴四邊形ABCD是平行四邊形,
故本選項(xiàng)能判定這個(gè)四邊形是平行四邊形;
B、∵AB=DC AD=BC,
∴四邊形ABCD是平行四邊形,
故本選項(xiàng)能判定這個(gè)四邊形是平行四邊形;
C、∵AO=CO BO=DO,
∴四邊形ABCD是平行四邊形,
故本選項(xiàng)能判定這個(gè)四邊形是平行四邊形;
D、∵ABDC AD=BC,
∴四邊形ABCD是平行四邊形或等腰梯形,
故本選項(xiàng)不能判定這個(gè)四邊形是平行四邊形.
故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠C90°,AC60cm,AB100cma、bc…是在△ABC內(nèi)部的矩形,它們的一個(gè)頂點(diǎn)在AB上,一組對(duì)邊分別在AC上或與AC平行,另一組對(duì)邊分別在BC上或與BC平行.若各矩形在AC上的邊長(zhǎng)相等,矩形a的一邊長(zhǎng)是72cm,則這樣的矩形ab、c…的個(gè)數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某商品的進(jìn)價(jià)為每件40元.現(xiàn)在的售價(jià)是每件60元.每星期可賣(mài)出300件.市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)一元.每星期要少賣(mài)出10件;每降價(jià)一元,每星期可多賣(mài)出18件.如何定價(jià)才能使利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn) 是以 為直徑的 上一點(diǎn), 于點(diǎn) ,過(guò)點(diǎn) 的切線(xiàn),與 的延長(zhǎng)線(xiàn)相交于點(diǎn) 的中點(diǎn),連接 并延長(zhǎng)與 相交于點(diǎn) ,延長(zhǎng) 的延長(zhǎng)線(xiàn)相交于點(diǎn) ,且

(1)求證:BF=EF;

(2)

(3)的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,在平面直角坐標(biāo)系中,點(diǎn) O 是坐標(biāo)原點(diǎn),四邊形 ABCO 是菱形,點(diǎn) A 的坐標(biāo)為(-3,4),點(diǎn) Cx 軸的正半軸上,直線(xiàn) ACy 軸于點(diǎn) MAB 邊交 y 軸于點(diǎn) H

1)求直線(xiàn) AC 的解析式;

2)連接 BM,如圖 2,動(dòng)點(diǎn) P 從點(diǎn) A 出發(fā),沿折線(xiàn) ABC 方向以 2 個(gè)單位/秒的速度向終點(diǎn) C 勻速運(yùn)動(dòng),設(shè)△PMB 的面積為 SS0),點(diǎn) P 的運(yùn)動(dòng)時(shí)間為 t 秒,求 St 之間的函數(shù)關(guān)系式(要求寫(xiě)出自變量 t 的取值范圍);

3)在(2)的條件下,當(dāng) t 為何值時(shí),∠MPB 與∠BCO 互為余角,并求此時(shí)直線(xiàn) OP 與直線(xiàn) AC 所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用尺規(guī)在一個(gè)平行四邊形內(nèi)作菱形ABCD,下列作法中錯(cuò)誤的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BCCD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類(lèi)比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=ADB+D=180°,點(diǎn)E、F分別在邊BCCD上,則當(dāng)∠EAF與∠BAD滿(mǎn)足  關(guān)系時(shí),仍有EF=BE+FD;請(qǐng)證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°ADC=120°,BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AEADDF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41 =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于給定的兩個(gè)函數(shù),任取自變量x的一個(gè)值,當(dāng)x1時(shí),它們對(duì)應(yīng)的函數(shù)值互為相反數(shù):當(dāng)x1時(shí),它們對(duì)應(yīng)的函數(shù)值相等,我們稱(chēng)這樣的兩個(gè)函數(shù)互為相關(guān)函數(shù),例如:一次函數(shù)yx4,它的相關(guān)函數(shù)為

1)一次函數(shù)y=﹣x+5的相關(guān)函數(shù)為   

2)已知點(diǎn)Ab1,4),點(diǎn)B坐標(biāo)(b+3,4),函數(shù)y3x2的相關(guān)函數(shù)與線(xiàn)段AB有且只有一個(gè)交點(diǎn),求b的取值范圍;

3)當(dāng)b+1xb+2時(shí),函數(shù)y=﹣3x+b2的相關(guān)函數(shù)的最小值為﹣3,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長(zhǎng)40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.

(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案