(2008•荊州)如圖所示的長方體是某種飲料的紙質(zhì)包裝盒,規(guī)格為5×6×10(單位:cm),在上蓋中開有一孔便于插吸管,吸管長為13cm,小孔到圖中邊AB距離為1cm,到上蓋中與AB相鄰的兩邊距離相等,設(shè)插入吸管后露在盒外面的管長為hcm,則h的最小值大約為    cm.
(精確到個位,參考數(shù)據(jù):≈1.4,≈1.7,≈2.2).
【答案】分析:本題中,要求露出外面的管長h的最短值,其實相當于求一個3×4×10長方體的對角線(此時,h最。,據(jù)此解答即可.
解答:解:如圖所示:連接DC,CF,
由題意:ED=3,EC=5-1=4
CD2=32+42=25=52,
CF2=52+102=125,
∴吸管口到紙盒內(nèi)的最大距離==5≈11cm.
∴h=13-11≈2cm.
故答案為:2.
點評:本題要弄清楚h最短時管子的擺放姿勢,然后根據(jù)勾股定理即可得出結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•荊州)如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點在第二象限,A(1,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設(shè)平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)是否存在某一時刻t使平移中直角頂點C經(jīng)過拋物線y=x2+4x+3的頂點?若存在,求出t值;若不存在,請說明理由;
(3)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2008•荊州)如圖,一次函數(shù)y=x-2的圖象分別交x軸、y軸于A、B,P為AB上一點且PC為△AOB的中位線,PC的延長線交反比例函數(shù)(k>0)的圖象于Q,S△OQC=,則k的值和Q點的坐標分別為k=    ,Q   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省十堰市鄖西縣中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:填空題

(2008•荊州)如圖,一次函數(shù)y=x-2的圖象分別交x軸、y軸于A、B,P為AB上一點且PC為△AOB的中位線,PC的延長線交反比例函數(shù)(k>0)的圖象于Q,S△OQC=,則k的值和Q點的坐標分別為k=    ,Q   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•荊州)如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點在第二象限,A(1,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設(shè)平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)是否存在某一時刻t使平移中直角頂點C經(jīng)過拋物線y=x2+4x+3的頂點?若存在,求出t值;若不存在,請說明理由;
(3)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2008•荊州)如圖,一次函數(shù)y=x-2的圖象分別交x軸、y軸于A、B,P為AB上一點且PC為△AOB的中位線,PC的延長線交反比例函數(shù)(k>0)的圖象于Q,S△OQC=,則k的值和Q點的坐標分別為k=    ,Q   

查看答案和解析>>

同步練習(xí)冊答案