【題目】如圖,△ABC中,∠BAC45°,∠ACB30°,將△ABC繞點A順時針旋轉得到△AB1C1,當點C1B1、C三點共線時,旋轉角為α,連接BB1,交AC于點D.下列結論:AC1C為等腰三角形;AB1D∽△BCD;③α75°;CACB1,其中正確的是( 。

A.①③④B.①②④C.②③④D.①②③④

【答案】B

【解析】

將△ABC繞點A順時針旋轉得到△AB1C1,得到△ABC≌△AB1C1,根據(jù)全等三角形的性質得到AC1=AC,于是得到△AC1C為等腰三角形;故①正確;根據(jù)等腰三角形的性質得到∠C1=ACC1=30°,由三角形的內角和得到∠C1AC=120°,得到∠B1AB=120°,根據(jù)等腰三角形的性質得到∠AB1B=30°=ACB,于是得到△AB1D∽△BCD;故②正確;由旋轉角α=120°,故③錯誤;根據(jù)旋轉的性質得到∠C1AB1=BAC=45°,推出∠B1AC=AB1C,于是得到CA=CB1;故④正確.

解:∵將△ABC繞點A順時針旋轉得到△AB1C1,

∴△ABC≌△AB1C1

AC1AC,

∴△AC1C為等腰三角形;故正確;

AC1AC,

∴∠C1=∠ACC130°,

∴∠C1AC120°,

∴∠B1AB120°,

AB1AB,

∴∠AB1B30°=∠ACB

∵∠ADB1=∠BDC,

∴△AB1D∽△BCD;故正確;

∵旋轉角為α,

α120°,故錯誤;

∵∠C1AB1=∠BAC45°,

∴∠B1AC75°,

∵∠AB1C1=∠BAC105°,

∴∠AB1C75°,

∴∠B1AC=∠AB1C,

CACB1;故正確.

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】[問題發(fā)現(xiàn)]如圖1,半圓的直徑是半圓上的一個動點,則面積的最大值是_

[問題解決]如圖2所示的是某街心花園的一角.在扇形中,米,在圍墻上分別有兩個入口米,的中點,出口上.現(xiàn)準備沿從入口到出口鋪設兩條景觀小路,在四邊形內種花,在剩余區(qū)域種草.

①出口設在距直線多遠處可以使四邊形的面積最大?最大面積是多少?(小路寬度不計)

②已知鋪設小路所用的普通石材每米的造價是元,鋪設小路所用的景觀石材每米的造價是元問:在上是否存在點,使鋪設小路的總造價最低?若存在,請求出最低總造價和出口距直線的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

背景閱讀:旋轉就是將圖形上的每一點在平面內繞著旋轉中心旋轉固定角度的位置移動,其中是過程,是結果.旋轉作為圖形變換的一種,具備圖形旋轉前后對應點到旋轉中心的距離相等:對應點與旋轉中心所連線段的夾角等于旋轉角:旋轉前、后的圖形是全等圖形等性質.所以充分運用這些性質是在解決有關旋轉問題的關。

實踐操作:如圖1,在RtABC中,∠B90°,BC2AB12,點DE分別是邊BC,AC的中點,連接DE,將△EDC繞點C按順時針方向旋轉,記旋轉角為α

問題解決:(1)①當α時,   ;②當α180°時,   

2)試判斷:當0°≤a360°時,的大小有無變化?請僅就圖2的情形給出證明.

問題再探:(3)當△EDC旋轉至A,D,E三點共線時,求得線段BD的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線yax22mx3m2)(m0)交x軸于AB兩點(其中A點在B點左側),交y軸于點C

1)若A點坐標為(﹣10),則B點坐標為 

2)如圖1,在 1)的條件下,且am1,設點My軸上且滿足∠OCA+AMO=∠ABC,試求點M坐標.

3)如圖2,在y軸上有一點P0n)(點P在點C的下方),直線PA、PB分別交拋物線于點EF,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數(shù)y的圖象在第一象限的交點為C,CDx軸于D,若OB3,OD6,AOB的面積為3

1)求一次函數(shù)與反比例函數(shù)的表達式;

2)當x0時,比較kx+b的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店11月份購進甲、乙兩種水果共花費1700元,其中甲種水果8/千克,乙種水果18/千克.12月份,這兩種水果的進價上調為:甲種水果10/千克,乙種水果20/千克.

1)若該店12月份購進這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進甲、乙兩種水果分別是多少千克?

2)若12月份將這兩種水果進貨總量減少到120千克,設購進甲種水果a千克,需要支付的貨款為w元,求wa的函數(shù)關系式;

3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca0)的圖象與x軸交于點A(﹣10),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結論:①abc0;②4a+2b+c0;③a;④bc.其中含所有正確結論的選項是( )

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,于點,點是線段的一個動點,則的最小值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年第七屆世界軍人運動會(7thCISMMilitaryWorldGames)于20191018日至27日在中國武漢舉行,這是中國第一次承辦綜合性國際軍事賽事,也是繼北京奧運會后,中國舉辦的規(guī)模最大的國際體育盛會.某射擊運動員在一次訓練中射擊了10次,成績如圖所示.下列結論中不正確的有(  )個

①眾數(shù)是8;②中位數(shù)是8;③平均數(shù)是8;④方差是1.6

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案