如圖(1),已知兩個(gè)全等三角形的直角頂點(diǎn)及一條直角邊重合。將△ACB繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)到 的位置,其中交直線AD于點(diǎn)E,分別交直線AD、AC于點(diǎn)F、G,則在圖(2)中,全等三角形共有

A.5對(duì)    B.4對(duì)     C.3對(duì)    D.2對(duì)
B

試題分析:根據(jù)旋轉(zhuǎn)的性質(zhì)和全等三角形的判定,有
≌△ACD,≌△FDC, ≌△ACE,≌△AGF.
共4對(duì)。故選B。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有(  )
A.4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,將一張直角三角板紙片ABC沿中位線DE剪開(kāi)后,在平面上將△BDE繞著CB的中點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°,點(diǎn)E到了點(diǎn)E′位置,則四邊形ACE′E的形狀是       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD中,點(diǎn)E、F分別是邊AD、AB的中點(diǎn),連接EF.

(1)如圖1,若點(diǎn)G是邊BC的中點(diǎn),連接FG,則EF與FG關(guān)系為:      ;
(2)如圖2,若點(diǎn)P為BC延長(zhǎng)線上一動(dòng)點(diǎn),連接FP,將線段FP以點(diǎn)F為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)900,得到線段FQ,連接EQ,請(qǐng)猜想EF、EQ、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P為CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,在圖3中補(bǔ)全圖形,并直接寫出EF、EQ、BP三者之間的數(shù)量關(guān)系:     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在邊長(zhǎng)為1小正方形組成的10×10網(wǎng)格中(我們把組成網(wǎng)格的小正方形的頂點(diǎn)稱為格點(diǎn)),四邊形ABCD在直線l的左側(cè),其四個(gè)頂點(diǎn)A、B、C、D分別在網(wǎng)格的格點(diǎn)上。

(1)請(qǐng)你在所給的網(wǎng)格中畫出四邊形,使四邊形和四邊形ABCD關(guān)于直線l對(duì)稱,分別是點(diǎn)A、B、C、D的對(duì)稱點(diǎn);
(2)在(1)的條件下,結(jié)合你畫的圖形,直接寫出線段的長(zhǎng)度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列圖形中,是中心對(duì)稱圖形的是【   】
A.平行四邊形B.正五邊形C.等腰梯形D.直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,是一個(gè)4×4的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)為1.請(qǐng)你在網(wǎng)格中以左上角的三角形為基本圖形,通過(guò)平移、對(duì)稱或旋轉(zhuǎn)變換,設(shè)計(jì)一個(gè)精美圖案,使其滿足:

①既是軸對(duì)稱圖形,又是以點(diǎn)O為對(duì)稱中心的中心對(duì)稱圖形;
②所作圖案用陰影標(biāo)識(shí),且陰影部分面積為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,如果將矩形紙沿虛線①對(duì)折后,沿虛線②剪開(kāi),剪出一個(gè)直角三角形,展開(kāi)后得到一個(gè)等腰三角形,則展開(kāi)后的等腰三角形周長(zhǎng)是
A.12B.18C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖①是3×3正方形方格,將其中兩個(gè)方格涂黑,并且使得涂黑后的整個(gè)圖案是軸對(duì)稱圖形,約定繞正方形ABCD的中心旋轉(zhuǎn)能重合的圖案都視為同一種,例②中四幅圖就視為同一種,則得到不同共有
A.4種B.5種C.6種D.7種

查看答案和解析>>

同步練習(xí)冊(cè)答案