【題目】交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A,B,C,D,E等著名景點,該市旅游部門統(tǒng)計繪制出2018·小長假期間旅游情況統(tǒng)計圖,根據(jù)圖中信息回答下列問題:

(1)2018·期間,該市景點共接待游客   萬人,扇形統(tǒng)計圖中C景點所對應的圓心角的度數(shù)是   ,并補全條形統(tǒng)計圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預計2018·國慶節(jié)將有80萬游客選擇該市旅游,E景點每張門票是25元,請估計2018·國慶期間E景點門票收入約是多少萬元?

【答案】(1)50,28.8°,12(2)240

【解析】1)根據(jù)A景點的人數(shù)以及百分比進行計算即可得到該市周邊景點共接待游客數(shù);根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進行計算即可得到C景點所對應的圓心角的度數(shù);根據(jù)B景點接待游客數(shù)補全條形統(tǒng)計圖;

2)根據(jù)E景點接待游客數(shù)所占的百分比,即可估計2018節(jié)選擇去E景點旅游的人數(shù)進而得到門票收入

1)該市周邊景點共接待游客數(shù)為15÷30%=50(萬人),C景點所對應的圓心角的度數(shù)是×360°=28.8°,B景點接待游客數(shù)為50×24%=12(萬人),補全條形統(tǒng)計圖如下

2E景點接待游客數(shù)所占的百分比為×100%=12%,2018節(jié)選擇去E景點旅游的人數(shù)約為80×12%=9.6(萬人)E景點門票收入約為:25×9.6=240(萬元).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】按照下列要求完成畫圖及相應的問題解答

1)畫直線;

2)畫

3)畫線段 ;

4)過點畫直線的垂線,交直線于點 ;

5)請測量點到直線的距離為__________ (精確到0.1 ) .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是菱形邊上的一動點,它從點出發(fā)沿在路徑勻速運動到點,設(shè)的面積為,點的運動時間為,則關(guān)于的函數(shù)圖象大致為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗室里,水平圓桌面上有甲乙丙三個圓柱形容器(容器足夠高),底面半徑之比為1:2:1,用兩根相同的管子在容器的5cm高度處連接(即管子底端離容器底5cm),現(xiàn)三個容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水1分鐘,乙的水位高度為cm,則開始注入________分鐘的水量后,甲與乙的水位高度之差是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是等腰三角形,動點P在斜邊AB所在的直線上,以PC為直角邊作等腰三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:

(1)如圖①,若點P在線段AB上,且AC=1+,PA=,則:

①線段PB= ,PC= ;

②猜想:PA2,PB2,PQ2三者之間的數(shù)量關(guān)系為 ;

(2)如圖②,若點P在AB的延長線上,在(1)中所猜想的結(jié)論仍然成立,請你利用圖②給出證明過程;

(3)若動點P滿足,求的值.(提示:請利用備用圖進行探求)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平整的地面上,由若干個完全相同的棱長為10 cm的小正方體堆成一個幾何體,如圖①所示.

(1)請你在方格紙中分別畫出這個幾何體的主視圖和左視;

(2)若現(xiàn)在手頭還有一些相同的小正方體,如果保持這個幾何體的主視圖和俯視圖不變,

.在圖①所示幾何體上最多可以添加 個小正方體;

.在圖①所示幾何體上最多可以拿走 個小正方體;

.在題Ⅱ的情況下,把這個幾何體放置在墻角,使得幾何體的左面和后面靠墻,其俯視圖如圖②所示,若給該幾何體露在外面的面噴上紅漆,則需要噴漆的面積最少是多少平方厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知高鐵的速度比動車的速度快50 km/h,小路同學從蘇州去北京游玩,本打算乘坐動車,需要6h才能到達;由于得知開通了高鐵,決定乘坐高鐵,她發(fā)現(xiàn)乘坐高鐵比乘坐動車節(jié)約72 min.求高鐵的速度和蘇州與北京之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=16,OAB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,APBQ分別切優(yōu)弧于點P,Q且點P, QAB異側(cè),連接OP

(1)求證:APBQ;

(2)當BQ=4時,求扇形COQ的面積及的長(結(jié)果保留π);

(3)若APO的外心在扇形COD的內(nèi)部,請直接寫出OC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】安德利水果超市購進一批時令水果,20天銷售完畢,超市將本次銷售情況進行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)可繪制如圖所示的函數(shù)圖象,其中日銷售量(千克)與銷售時間(天)之間的函數(shù)關(guān)系如圖甲所示,銷售單價(元/千克)與銷售時間(天)之間的函數(shù)關(guān)系如圖乙所示。

1)直接寫出之間的函數(shù)關(guān)系式;

2)分別求出第10天和第15天的銷售金額。

3)若日銷售量不低于24千克的時間段為“最佳銷售期”,則此次銷售過程中“最佳銷售期”共有多少天?在此期間銷售單價最高為多少元?

查看答案和解析>>

同步練習冊答案