【題目】定義:若一個三角形一條邊上的高長為這條邊長的一半,則稱該三角形為這條邊上的半高三角形,這條高稱為這條邊上的半高,如圖,△ABCBC邊上的半高三角形.點P在邊AB上,PQBCAC于點Q,PMBC于點MQNBC于點N,連接MQ

1)請證明△APQPQ邊上的半高三角形.

2)請?zhí)骄?/span>BMPM,CN之間的等量關(guān)系,并說明理由;

3)若△ABC的面積等于16,求MQ的最小值

【答案】(1)見解析;(22PMBM+CN,理由見解析;(3.

【解析】

1)根據(jù)平行相似,證明△APQ∽△ABC,利用相似三角形對應(yīng)邊的比等于對應(yīng)高的比:,由半高三角形的定義可結(jié)論;

2)證明四邊形PMNQ是矩形,得PQMN,PMKR,代入ARBC,可得結(jié)論;

3)先根據(jù)△ABC的面積等于16,計算BCAR的長,設(shè)MNx,則BM+CN8xPMQN8x),根據(jù)勾股定理表示MQ,配方可得最小值.

1)證明:如圖,過AARBCR,交PQK

∵△ABCBC邊上的半高三角形,

ARBC,

PQBC,

∴△APQ∽△ABC,

,

AKPQ

∴△APQPQ邊上的半高三角形.

2)解:2PMBM+CN,理由是:

PMBC,QNBC,

∴∠PMN=∠MNQ=∠MPQ90°,

∴四邊形PMNQ是矩形,

PQMN,PMKR,

AKPQ,ARBC,

AK+RKBM+MN+CN),

PQ+PMBM+MN+CN,

2PMBM+CN;

3)解:∵△ABC的面積等于16,

16,

ARBC,

16,

BC8,AR4

設(shè)MNx,則BM+CN8x,PMQN8x),

MQ,

∴當(dāng)x時,MQ有最小值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在一次社會實踐活動中,組織學(xué)生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會實踐活動的效果,學(xué)校隨機(jī)抽取了部分學(xué)生,對“最喜歡的景點”進(jìn)行了問卷調(diào)查,并根據(jù)統(tǒng)計結(jié)果繪制了如下不完整的統(tǒng)計圖.其中最喜歡烈士陵園的學(xué)生人數(shù)與最喜歡博物館的學(xué)生人數(shù)之比為2:1,請結(jié)合統(tǒng)計圖解答下列問題:

(1)本次活動抽查了   名學(xué)生;

(2)請補(bǔ)全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,最喜歡植物園的學(xué)生人數(shù)所對應(yīng)扇形的圓心角是   度;

(4)該校此次參加社會實踐活動的學(xué)生有720人,請求出最喜歡烈士陵園的人數(shù)約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)

如圖1,在有一個“凹角∠A1A2A3n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+A3+A4+A5+A6+……+An﹣(n4)×180°.

驗證

1)如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+C+D

2)證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+C+D+E+F360°.

延伸

3)如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+A2A3A4=∠A1+A4+A5+A6……+An﹣(n  )×180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2).延長CBx軸于點A1,作第1個正方形A1B1C1C;延長C1B1x軸于點A2,作第2個正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個正方形的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任意拋擲一枚質(zhì)地均勻的正方體骰子2次,骰子的6個面上分別刻有16的點數(shù),記第一次擲得面朝上的點數(shù)為橫坐標(biāo),第二次擲得面朝上的點數(shù)為縱坐標(biāo),這樣組成的點的坐標(biāo)恰好在正比例函數(shù)yx上的概率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了了解學(xué)生每周在校體育鍛煉時間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計圖表,請根據(jù)圖表信息解答下列問題:

時間(小時)

 頻數(shù)(人數(shù))

 頻率

2≤t<3

4

0.1

3≤t<4

10

0.25

4≤t<5

a

0.15

5≤t<6

8

b

6≤t<7

12

0.3

合計

40

1

(1)表中的a=   ,b=   ;

(2)請將頻數(shù)分布直方圖補(bǔ)全;

(3)若該校共有1200名學(xué)生,試估計全校每周在校參加體育鍛煉時間至少有4小時的學(xué)生約為多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A1的坐標(biāo)為(2,0),過點A1x軸的垂線交直線lyx于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸正半軸于點A2,則點A2的坐標(biāo)為_____;再過點A2x軸的垂線交直線l于點B2,以原點O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點A3.按此作法進(jìn)行下去,則的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,ABAC,點E、F分別在邊ABBC上,且AEBF,CEAF相交于點G

1)求證:∠FGC=∠B

2)延長CEDA的延長線交于點H,求證:BECHAFAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD6,點EAD的中點,點P為線段AB上一個動點,連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當(dāng)△ECF為直角三角形時,AP的長為______.

查看答案和解析>>

同步練習(xí)冊答案