【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具,
(1)設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元,請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y件和銷(xiāo)售該品牌玩具獲得利潤(rùn)w元;
(2)在(1)問(wèn)條件下,若商場(chǎng)獲得了10000元銷(xiāo)售利潤(rùn),求該玩具銷(xiāo)售單價(jià)x應(yīng)定為多少元?
(3)在(1)問(wèn)條件下,若玩具廠(chǎng)規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于45元,且商場(chǎng)要完成不少于480件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?
【答案】
(1)解:y=600﹣10(x﹣40)=﹣10x+1000,
w=(﹣10x+1000)(x﹣30)=﹣10x2+1300x﹣30000
(2)解:根據(jù)題意,得:﹣10x2+1300x﹣30000=10000,
解得:x1=50,x2=80,
答:玩具銷(xiāo)售單價(jià)為50元或80元時(shí),可獲得10000元銷(xiāo)售利潤(rùn)
(3)解:根據(jù)題意得 ,
解得:45≤x≤52,
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,
∵a=﹣10<0,對(duì)稱(chēng)軸x=65,
∴當(dāng)45≤x≤52時(shí),y隨x增大而增大.
∴當(dāng)x=52時(shí),W最大值=10560(元),
答:商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是10560元
【解析】(1)根據(jù)銷(xiāo)售量與銷(xiāo)售單價(jià)之間的變化關(guān)系就可以直接求出y與x之間的關(guān)系式;根據(jù)銷(xiāo)售問(wèn)題的利潤(rùn)=售價(jià)﹣進(jìn)價(jià)就可以表示出w與x之間的關(guān)系;(2)根據(jù)題意得方程求得x1=50,x2=80,于是得到結(jié)論;(3)根據(jù)銷(xiāo)售單價(jià)不低于45元且商場(chǎng)要完成不少于480件的銷(xiāo)售任務(wù)求得45≤x≤52,根據(jù)二次函數(shù)的性質(zhì)得到當(dāng)45≤x≤52時(shí),y隨x增大而增大,于是得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠(chǎng)都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠(chǎng)了解情況,獲得如下信息:
信息一:甲工廠(chǎng)單獨(dú)加工完成這批產(chǎn)品比乙工廠(chǎng)單獨(dú)加工完成這批產(chǎn)品多用10天;
信息二:乙工廠(chǎng)每天加工的數(shù)量是甲工廠(chǎng)每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個(gè)工廠(chǎng)每天分別能加工多少件新產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“經(jīng)過(guò)已知直線(xiàn)外一點(diǎn)作這條直線(xiàn)的垂線(xiàn)”的尺規(guī)作圖過(guò)程:
已知:直線(xiàn)l和l外一點(diǎn)P.(如圖1)
求作:直線(xiàn)l的垂線(xiàn),使它經(jīng)過(guò)點(diǎn)P.
作法:如圖2
(1)在直線(xiàn)l上任取兩點(diǎn)A,B;
(2)分別以點(diǎn)A,B為圓心,AP,BP長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)Q;
(3)作直線(xiàn)PQ.
所以直線(xiàn)PQ就是所求的垂線(xiàn).
請(qǐng)回答:該作圖的依據(jù)是_________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一個(gè)條件,某學(xué)習(xí)小組在討論這個(gè)條件時(shí)給出了如下幾種方案: ①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有( )
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,則∠ACB的度數(shù)為 ;
②若∠ACB=140°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說(shuō)明理由.
(3)當(dāng)∠ACE<180°且點(diǎn)E在直線(xiàn)AC的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請(qǐng)直接寫(xiě)出∠ACE角度所有可能的值(不必說(shuō)明理由);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,點(diǎn)D在邊OA上,將圖中的△COD繞點(diǎn)O按每秒10°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,在第 秒時(shí),邊CD恰好與邊AB平行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)B(1,3),連接BO,下面三個(gè)結(jié)論:①S△AOB=1.5,;②點(diǎn)(x1 , y1)和點(diǎn)(x2 , y2)在反比例函數(shù)的圖象上,若x1>x2 , 則y1<y2;③不等式x+2< 的解集是0<x<1.其中正確的有( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“趙爽炫圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲,如圖所示的“趙爽炫圖”是由四個(gè)全等直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為,較短直角邊長(zhǎng)為,若(a+b)2=21,大正方形的面積為13,則小正方形的邊長(zhǎng)為( )
A. B. 2 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com