【題目】如圖1,AD,BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā)沿圖中某一個扇形順時針勻速運動,設(shè)∠APB=y(單位:度),如果y與點P運動的時間x(單位:秒)的函數(shù)關(guān)系的圖象大致如圖2所示,那么點P的運動路線可能為( )

A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O

【答案】C
【解析】解:當點P沿O→C運動時,
當點P在點O的位置時,y=90°,
當點P在點C的位置時,
∵OA=OC,
∴y=45°,
∴y由90°逐漸減小到45°;
當點P沿C→D運動時,
根據(jù)圓周角定理,可得
y≡90°÷2=45°;
當點P沿D→O運動時,
當點P在點D的位置時,y=45°,
當點P在點0的位置時,y=90°,
y由45°逐漸增加到90°.
故點P的運動路線可能為O→C→D→O.
故選:C.
根據(jù)圖2,分三段考慮:當點P沿O→C運動時;當點P沿C→D運動時;當點P沿D→O運動時;分別判斷出y的取值情況,進而判斷出y與點P運動的時間x(單位:秒)的關(guān)系即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【概念學(xué)習(xí)】規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫除方,如, 等.類比有理數(shù)乘方,我們把記作,讀作“2的圈3次方”, 記作,讀作“的圈4次方”.一般地,把≠0)記作,讀作“a的圈c次方”.

【初步探究】

1)直接寫出計算結(jié)果: =______________, =______________

(2)關(guān)于除方,下列說法錯誤的是( )

A.任何非零數(shù)的圈3次方都等于它的倒數(shù) B.對于任何正整數(shù)c, =1

C D.負數(shù)的圈奇數(shù)次方結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方結(jié)果是正數(shù)

【深入思考】

我們知道有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?

==

(1)試一試:仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.

=___________; =_____________; =____________

(2)想一想:將一個非零有理數(shù)a的圈cc≥3)次方寫成冪的形式等于___________.

3)算一算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AD是弦,∠A=22.5°,延長AB到點C,使得∠ACD=45°.

(1)求證:CD是⊙O的切線.
(2)若AB=2 ,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,D是BC上的點.求證:BD2+CD2=2AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)八年級的籃球隊有名隊員.在罰籃投球訓(xùn)練中,這名隊員各投籃次的進球情況如下表:

進球數(shù)

人數(shù)

針對這次訓(xùn)練,請解答下列問題:

名隊員進球數(shù)的平均數(shù)是________,中位數(shù)是________;

求這支球隊罰籃命中率.罰籃命中率(進球數(shù)投籃次數(shù))________;

若隊員小亮的罰籃命中率為,請你分析小亮在這支球隊中的罰籃水平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:在數(shù)學(xué)課上,老師提出如下問題:

尺規(guī)作圖,過圓外一點作圓的切線.
已知:⊙O和點P
求過點P的⊙O的切線

小涵的主要作法如下:

如圖,(1)連結(jié)OP,作線段OP的中點A;
(2)以A為圓心,OA長為半徑作圓,交⊙O于點B,C;
(3)作直線PB和PC.
所以PB和PC就是所求的切線.

老師說:“小涵的做法是正確的.”
請回答:小涵的作圖依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點D,交AC邊于點F,作DE⊥AC于點E.

(1)求證:DE是⊙O的切線;
(2)若△ABC的邊長為4,求EF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從圖 2 開始,每一個圖形都是由基本圖形通過平移或翻折拼成的:

觀察發(fā)現(xiàn),圖 10 中共有_________________個小三角形, n 共有____________個小三角形,

查看答案和解析>>

同步練習(xí)冊答案