【題目】如圖,網(wǎng)格中小正方形的邊長為10,4).

(1) 在圖中標(biāo)出點(diǎn),使點(diǎn)到點(diǎn),,,的距離都相等;

(2) 連接,,,此時(shí)___________三角形;

(3) 四邊形的面積是___________

【答案】1)見解析;(2)作圖見解析;等腰直角;(34.

【解析】

1)線段AB、線段BC、線段CD的垂直平分線的交點(diǎn)即為所求;

2)根據(jù)勾股定理求出PO、PD、OD的長,然后利用勾股定理逆定理進(jìn)行判斷;

3)用四邊形ABCD所在的等腰直角三角形的面積減去一個(gè)小等腰直角三角形的面積即可.

解:(1)如圖所示,點(diǎn)P即為所求;

2如圖所示,,,,

PO=PD,PO2+PD2=OD2

是等腰直角三角形;

3)四邊形的面積=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(),一元一次不等式和一次函數(shù)后,把相關(guān)知識歸納整理如下:

1)請你根據(jù)以上方框中的內(nèi)容在下面數(shù)字序號后寫出相應(yīng)的結(jié)論:

; ;

2)如果點(diǎn)C的坐標(biāo)為(13),那么不等式kx+bk1x+b1的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點(diǎn)C、E、D在同一直線上),求小水池的寬DE.(結(jié)果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑作⊙O,分別交AC、BC于點(diǎn)D、E,點(diǎn)FAC的延長線上,且∠A2CBF

(1)求證:BF與⊙O相切.

(2)BCCF4,求BF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形ABC中,∠A、∠B、∠C的對邊分別為a、b、c,已知a=3,b和c是關(guān)于x的方程x2+mx+2-m=0的兩個(gè)實(shí)數(shù)根.

(1)ABC的周長.

(2)ABC的三邊均為整數(shù)時(shí)的外接圓半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點(diǎn)C在⊙O上,∠AOB=80°

(1)若點(diǎn)C在優(yōu)弧BD上,求∠ACD的大;

(2)若點(diǎn)C在劣弧BD上,直接寫出∠ACD的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDAB,BEAC,垂足分別為D、E,BE、CD相交于點(diǎn)O.如果ABAC,那么圖中全等的直角三角形的對數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,﹣1),圖象與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)拋物線對稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;

(3)點(diǎn)E為直線BC上的任意一點(diǎn),過點(diǎn)Ex軸的垂線與拋物線交于點(diǎn)F,問是否存在點(diǎn)E使△DEF為直角三角形?若存在,求出點(diǎn)E坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.

查看答案和解析>>

同步練習(xí)冊答案