【題目】如圖,以的直角邊為直徑作交斜邊于點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn),作交于點(diǎn),連接.
(1)求證:
(2)求證:是的切線;
(3)若的半徑為,,求的值.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)連接,由是直徑,可得,結(jié)合,即可得到結(jié)論;
(2)由垂徑定理得:直線垂直平分,從而得,結(jié)合,即可得到結(jié)論;
(3)過(guò)點(diǎn)作于點(diǎn),易證是等邊三角形,,AH=,在RtOCD中,OD=6,從而得,根據(jù)正切三角函數(shù)的定義,即可求解.
(1)連接,
是直徑,
∴∠AEC=90°,即:,
∵,
;
(2),
∴直線垂直平分,
,
,
,
,即:OE⊥EF,
∴是的切線;
(3)過(guò)點(diǎn)作于點(diǎn),
,
是等邊三角形,
,AH=OH=,∠AOE=∠COD=60°,
∴在RtOCD中,OD=2OC=2×3=6,
∴,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)對(duì)一種設(shè)備進(jìn)行升級(jí)改造,并在一定時(shí)間內(nèi)進(jìn)行生產(chǎn)營(yíng)銷,設(shè)改造設(shè)備的臺(tái)數(shù)為x,現(xiàn)有甲、乙兩種改造方案.
甲方案:升級(jí)后每臺(tái)設(shè)備的生產(chǎn)營(yíng)銷利潤(rùn)為4000元,但改造支出費(fèi)用由材料費(fèi)和施工費(fèi)以及其他費(fèi)用三部分組成,其中材料費(fèi)與x的平方成正比,施工費(fèi)與x成正比,其他費(fèi)用為2500元,(利潤(rùn)=生產(chǎn)營(yíng)銷利潤(rùn)-改造支出費(fèi)用).設(shè)甲方案的利潤(rùn)為(元),經(jīng)過(guò)統(tǒng)計(jì),得到如下數(shù)據(jù):
改造設(shè)備臺(tái)數(shù)x(臺(tái)) | 20 | 40 |
利潤(rùn)(元) | 9500 | 5500 |
乙方案:升級(jí)后每臺(tái)設(shè)備的生產(chǎn)營(yíng)銷利潤(rùn)為3500元,但改造支出費(fèi)用與x之間滿足函數(shù)關(guān)系式:(a為常數(shù),),且在使用過(guò)程中一共還需支出維護(hù)費(fèi)用,(利潤(rùn)=生產(chǎn)營(yíng)銷利潤(rùn)-改造支出費(fèi)用-維護(hù)費(fèi)用).設(shè)乙方案的利潤(rùn)為(元).
(1)分別求出,與x的函數(shù)關(guān)系式;
(2)若,的最大值相等,求a的值;
(3)如果要將30臺(tái)設(shè)備升級(jí)改造,請(qǐng)你幫助決策,該企業(yè)應(yīng)選哪種方案,所獲得的利潤(rùn)較大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于兩個(gè)點(diǎn),和圖形,如果在圖形上存在點(diǎn),(,可以重合)使得,那么稱點(diǎn)與點(diǎn)是圖形的一對(duì)平衡點(diǎn).
(1)如圖1,已知點(diǎn),;
①設(shè)點(diǎn)與線段上一點(diǎn)的距離為,則的最小值是 ,最大值是 ;
②在,,這三個(gè)點(diǎn)中,與點(diǎn)是線段的一對(duì)平衡點(diǎn)的是 ;
(2)如圖2,已知的半徑為1,點(diǎn)的坐標(biāo)為
(3)如圖3,已知點(diǎn),以點(diǎn)為圓心,長(zhǎng)為半徑畫弧交的正半軸于點(diǎn).點(diǎn)(其中)是坐標(biāo)平面內(nèi)一個(gè)動(dòng)點(diǎn),且,是以點(diǎn)為圓心,半徑為2的圓,若上的任意兩個(gè)點(diǎn)都是的一對(duì)平衡點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABC=45°,AB=4,BC=9,直線MN平分平行四邊形ABCD的面積,分別交邊AD、BC于點(diǎn)M、N,若△BMN是以MN為腰的等腰三角形,則BN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明為今年將要參加中考的好友小李制作了一個(gè)(如圖)正方體禮品盒,六面上各有一字,連起來(lái)就是“預(yù)祝中考成功”,其中“預(yù)”的對(duì)面是“中”,“成”的對(duì)面是“功”,則它的平面展開圖可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)的發(fā)展,私家車變得越來(lái)越普及,使用節(jié)能低油耗汽車,對(duì)環(huán)保有著非常積極的意義,某市有關(guān)部門對(duì)本市的某一型號(hào)的若干輛汽車,進(jìn)行了一項(xiàng)油耗抽樣實(shí)驗(yàn):即在同一條件下,被抽樣的該型號(hào)汽車,在油耗的情況下,所行駛的路程(單位:)進(jìn)行統(tǒng)計(jì)分析,結(jié)果如圖所示:
(注:記為,為,為,為,為)
請(qǐng)依據(jù)統(tǒng)計(jì)結(jié)果回答以下問(wèn)題:
(1)試求進(jìn)行該試驗(yàn)的車輛數(shù);
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,以A為圓心,AB為半徑畫弧,恰好過(guò)點(diǎn)C,已知AB=4,則圖中陰影部分的面積為_______(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=10,BC=15,點(diǎn)D,E,P分別是邊AC,AB;BC上的點(diǎn),且AD=4,AE=4EB.若 是等腰三角形,則CP的長(zhǎng)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自我省深化課程改革以來(lái),某校開設(shè)了:A.利用影長(zhǎng)求物體高度,B.制作視力表,C.設(shè)計(jì)遮陽(yáng)棚,D.制作中心對(duì)稱圖形,四類數(shù)學(xué)實(shí)踐活動(dòng)課.規(guī)定每名學(xué)生必選且只能選修一類實(shí)踐活動(dòng)課,學(xué)校對(duì)學(xué)生選修實(shí)踐活動(dòng)課的情況進(jìn)行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息解決下列問(wèn)題:
(1)本次共調(diào)查名學(xué)生,扇形統(tǒng)計(jì)圖中B所對(duì)應(yīng)的扇形的圓心角為度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)選修D類數(shù)學(xué)實(shí)踐活動(dòng)的學(xué)生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機(jī)抽取2人做校報(bào)設(shè)計(jì),請(qǐng)用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com