【題目】計算下列各題.
①(x2+3)(3x2﹣1)
②(4x2y﹣8x3y3)÷(﹣2x2y)
③[(m+3)(m﹣3)]2
④10﹣2×100+105÷103
⑤
⑥,其中x滿足x2﹣x﹣1=0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形的邊,分別在軸,軸上,點在邊上,將該長方形沿折疊,點恰好落在邊上的點處,若,,則所在直線的表達式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O外一點,AB=AC,連接BC,交⊙O于點D,過點D作DE⊥AC,垂足為E.
(1)求證:DE與⊙O相切.
(2)若∠B=30°,AB=4,則圖中陰影部分的面積是 (結(jié)果保留根號和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側(cè)作等邊△ACD,連接BD,則BD所在直線與OA所在直線的位置關(guān)系是( 。
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標(biāo);
(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AD 是 BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點 E,過點 E 作 EF∥AC,分別交 AB、AD 于點 F、G.則下列結(jié)論:①∠BAC=90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B=2∠AEF,其中正確的有( )
A. 4 個B. 3 個C. 2 個D. 1 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過平移后得到,已知點的坐標(biāo)為(4,0),寫出頂點,的坐標(biāo);
(2)若△ABC和關(guān)于原點O成中心對稱圖形,寫出的各頂點的坐標(biāo);
(3)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到,寫出的各頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC中,∠A=90°,AB=AC,點D是BC邊的中點連接AD,則易證AD=BD=CD,即AD=BC;如圖2,若將題中AB=AC這個條件刪去,此時AD仍然等于BC.
理由如下:延長AD到H,使得AH=2AD,連接CH,先證得△ABD≌△CHD,此時若能證得△ABC≌△CHA,
即可證得AH=BC,此時AD=BC,由此可見倍長過中點的線段是我們?nèi)切巫C明中常用的方法.
(1)請你先證明△ABC≌△CHA,并用一句話總結(jié)題中的結(jié)論;
(2)現(xiàn)將圖1中△ABC折疊(如圖3),點A與點D重合,折痕為EF,此時不難看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若圖2中△ABC也進行這樣的折疊(如圖4),此時線段BE、CF、EF還有這樣的關(guān)系式嗎?若有,請證明;若沒有,請舉反例.
(3)在(2)的條件下,將圖3中的△DEF繞著點D旋轉(zhuǎn)(如圖5),射線DE、DF分別交AB、AC于點E、F,此時(2)中結(jié)論還成立嗎?請說明理由.圖4中的△DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關(guān)系式是否成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com