【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線C1:y1=(x+3)2﹣,將拋物線C1 向右平移3個(gè)單位、再向上平移4.5個(gè)單位得拋物線C2,則圖中陰影部分的面積為________.
【答案】
【解析】
根據(jù)上→加,下→減,左→加,右→減的原則表示拋物線C2的解析式,由對稱性可知:S陰影部分=S△OPQ,先計(jì)算Q的坐標(biāo),表示PQ的長,可得面積.
由平移可得:拋物線C2的解析式:y2=(x+3-3)2-+,
即拋物線C2的解析式:y2=x2,
由拋物線C2的解析式:y2=x2,可知,拋物線C2過原點(diǎn)O,
當(dāng)x=-3時(shí),y2=×(-3)2=,
∴Q(-3,),
∵拋物線C1:y1=(x+3)2﹣,
∴P(-3,-),
∴PQ=+=9,P與Q關(guān)于x軸對稱,
∴OQ=OP,
∴S陰影部分=S△OPQ=×3×PQ=×3×9=.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=5,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線與x軸的兩個(gè)交點(diǎn)及其頂點(diǎn)構(gòu)成等邊三角形,則稱該拋物線“等邊拋物線”.
(1)若對任意m,n,點(diǎn)M(m,n)和點(diǎn)N(-m+4,n)恒在“等邊拋物線”:上,求拋物線的解析式;
(2)若拋物線:“等邊拋物線”,求的值;
(3)對于“等邊拋物線”:,當(dāng)1<x<m吋,總存在實(shí)數(shù)b。使二次函數(shù)的圖象在一次函數(shù)y=x圖象的下方,求m的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0(2)9a>3bc;(3)9a+b+c=0:(4)若方程a(x+1)(x﹣5)=﹣2的兩根為x1和x2,且x1<x2,則x1<1<5<x2,其中正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)E為△ABC內(nèi)切圓的圓心,連接EB的延長線交AC于點(diǎn)F,交⊙O于點(diǎn)D,連接AD,過點(diǎn)D作直線DN,使∠ADN=∠DBC.
(1)求證:直線DN是⊙O的切線;
(2)若DF=1,且BF=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,有AB為斜邊的等腰直角三角形ABC,其中點(diǎn)A(0,2),點(diǎn)C(﹣1,0),拋物線y=ax2+ax﹣2經(jīng)過B點(diǎn).
(1)求B點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否存在點(diǎn)N(點(diǎn)B除外),使得△ACN仍然是以AC為直角邊的等腰直角三角形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是根據(jù)九年級某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計(jì)圖,下面關(guān)于該班50名同學(xué)一周鍛煉時(shí)間的說法錯(cuò)誤的是( )
A. 眾數(shù)是7 B. 中位數(shù)是6.5
C. 平均數(shù)是 6.5 D. 平均每周鍛煉超過6小時(shí)的人占總數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊, , 是上一點(diǎn), , 是邊上一動(dòng)點(diǎn),將梯形沿直線折疊, 的對應(yīng)點(diǎn)為,當(dāng)的長度最小時(shí), 的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com