【題目】如圖,在ABC中,∠C90°,∠B30°,AD是∠BAC的角平分線,DEAB,垂足為點(diǎn)E,DE1BE,則ABC的周長(zhǎng)是( )

A.6+B.3+2C.6+2D.3+3

【答案】D

【解析】

根據(jù)含30°角的直角三角形的性質(zhì)可求出BD的長(zhǎng),根據(jù)角平分線的性質(zhì)可得CD的長(zhǎng),即可求出BC的長(zhǎng),根據(jù)含30°角的直角三角形的性質(zhì)可得AC=AB,利用勾股定理即可求出AC的長(zhǎng),進(jìn)而可得AB的長(zhǎng),即可求出△ABC的周長(zhǎng).

DEAB,∠B30°,

BD2DE2,

AD是∠BAC的角平分線,DEAB,∠C90°,

DCDE1,

BC3,

∵∠C90°,∠B30°,

ACAB,即AB=2AC,

RtABC中,AB2AC2+BC2,即(2AC2AC2+32

解得,AC,

AB2,

∴△ABC的周長(zhǎng)=AB+AC+BC3+3

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖,拋物線y=x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接AC,BC.點(diǎn)P是第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m,過(guò)點(diǎn)PPM⊥x軸,垂足為點(diǎn)M,PMBC于點(diǎn)Q,過(guò)點(diǎn)PPE∥ACx軸于點(diǎn)E,交BC于點(diǎn)F.

(1)求A,B,C三點(diǎn)的坐標(biāo);

(2)試探究在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,是否存在這樣的點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)請(qǐng)用含m的代數(shù)式表示線段QF的長(zhǎng),并求出m為何值時(shí)QF有最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甘肅省省府蘭州,又名金城,在金城,黃河母親河通過(guò)自身文化的演繹,衍生和流傳了獨(dú)特的“金城八寶”美食,“金城八寶”美食中甜品類有:味甜湯糊“灰豆子”、醇香軟糯“甜胚子”、生津潤(rùn)肺“熱冬果”、甜什錦“八寶百合”;其他類有:青白紅“牛肉面”、酸辣清涼“釀皮子”、清爽溜滑“漿水面”、香醇肥美“手抓羊肉”,李華和王濤同時(shí)去品嘗美食,李華準(zhǔn)備在“甜胚子、牛肉面、釀皮子、手抓羊肉”這四種美食中選擇一種,王濤準(zhǔn)備在“八寶百合、灰豆子、冬果、漿水面”這四種美食中選擇一種。(胚子、牛肉面、釀皮子、手抓羊肉分別記為A、B、C、D;八寶百合、灰豆子、熱冬果、漿水面分別記為E、F、G、H)

(1)用樹(shù)狀圖或表格的方法表示李華和王濤同時(shí)選擇美食的所有可能結(jié)果;

(2)求李華和王濤同時(shí)選擇的美食都是甜品類的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△PQR是△ABC經(jīng)過(guò)某種變換后得到的圖形,其中點(diǎn)A與點(diǎn)P,點(diǎn)B與點(diǎn)Q,點(diǎn)C與點(diǎn)R是對(duì)應(yīng)的點(diǎn),在這種變換下:

(1)直接寫(xiě)出下列各點(diǎn)的坐標(biāo)

A(____,_____)P(_____,_____);B(__________)Q(______,_____);C(_____,______)R(______,______)

②它們之間的關(guān)系是:______(用文字語(yǔ)言直接寫(xiě)出)

(2)在這個(gè)坐標(biāo)系中,三角形ABC內(nèi)有一點(diǎn)M,點(diǎn)M經(jīng)過(guò)這種變換后得到點(diǎn)N,點(diǎn)N在三角形PQR內(nèi),其中M、N的坐標(biāo)M(,6(a+b)10)N(1,4(b2a)6),求關(guān)于x的不等式b1的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】益馬高速通車(chē)后,將桃江馬跡塘的農(nóng)產(chǎn)品運(yùn)往益陽(yáng)的運(yùn)輸成本大大降低。馬跡塘一農(nóng)戶需要將A,B兩種農(nóng)產(chǎn)品定期運(yùn)往益陽(yáng)某加工廠,每次運(yùn)輸A,B產(chǎn)品的件數(shù)不變,原來(lái)每運(yùn)一次的運(yùn)費(fèi)是1200元,現(xiàn)在每運(yùn)一次的運(yùn)費(fèi)比原來(lái)減少了300元,A,B兩種產(chǎn)品原來(lái)的運(yùn)費(fèi)和現(xiàn)在的運(yùn)費(fèi)(單位:元∕件)如下表所示:

品種

A

B

原來(lái)的運(yùn)費(fèi)

45

25

現(xiàn)在的運(yùn)費(fèi)

30

20

(1)求每次運(yùn)輸?shù)霓r(nóng)產(chǎn)品中A,B產(chǎn)品各有多少件?

(2)由于該農(nóng)戶誠(chéng)實(shí)守信,產(chǎn)品質(zhì)量好,加工廠決定提高該農(nóng)戶的供貨量,每次運(yùn)送的總件數(shù)增加8件,但總件數(shù)中B產(chǎn)品的件數(shù)不得超過(guò)A產(chǎn)品件數(shù)的2倍,問(wèn)產(chǎn)品件數(shù)增加后,每次運(yùn)費(fèi)最少需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AB=AC,∠BAC=90°,分別過(guò)B,C向經(jīng)過(guò)點(diǎn)A的直線EF作垂線,垂足為E,F

1)如圖1,當(dāng)EF與斜邊BC不相交時(shí),請(qǐng)證明EF=BE+CF

2)如圖2,當(dāng)EF與斜邊BC相交時(shí),其他條件不變,寫(xiě)出EF、BE、CF之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖3,猜想EFBE、CF之間又存在怎樣的數(shù)量關(guān)系,寫(xiě)出猜想,不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,花叢中有一路燈桿AB,在燈光下,大華在D點(diǎn)處的影長(zhǎng)DE=3 m,沿BD方向行走到達(dá)G點(diǎn),DG=5 m,這時(shí)大華的影長(zhǎng)GH=4 m如果大華的身高為2 m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊AB在數(shù)軸上,數(shù)軸上點(diǎn)A表示的數(shù)為-1,正方形ABCD的面積為16

(1)數(shù)軸上點(diǎn)B表示的數(shù)為_(kāi)__;

(2)將正方形ABCD沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的正方形記為ABCD′,移動(dòng)后的正方形ABCD′與原正方形ABCD重疊部分的面積為S

①當(dāng)S=4時(shí),畫(huà)出圖形,并求出數(shù)軸上點(diǎn)A′表示的數(shù);

②設(shè)正方形ABCD的移動(dòng)速度為每秒2個(gè)單位長(zhǎng)度,點(diǎn)E為線段AA′的中點(diǎn),點(diǎn)F在線段BB′上,且BF=BB′.經(jīng)過(guò)t秒后,點(diǎn)E,F所表示的數(shù)互為相反數(shù),直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx的圖象經(jīng)過(guò)點(diǎn)A24)與B6,0).

1)求ab的值;

2)點(diǎn)C是該二次函數(shù)圖象上A,B兩點(diǎn)之間的一動(dòng)點(diǎn),橫坐標(biāo)為x2x6),寫(xiě)出四邊形OACB的面積S關(guān)于點(diǎn)C的橫坐標(biāo)x的函數(shù)表達(dá)式,并求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案