【題目】2019年4月23日是第二十四個“世界讀書日“.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據圖中信息解答下列問題:
(1)求本次比賽獲獎的總人數,并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“二等獎”所對應扇形的圓心角度數;
(3)學校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加“世界讀書日”宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,點E在邊AD上,點F在邊BC上,且AE=CF,點G,H在對角線BD上,且BG=DH.
(1)求證:△BFH≌△DEG;
(2)連接DF,若DF=BF,則四邊形EGFH是什么特殊四邊形?證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數y=(k≠0,x>0)的圖象經過頂點C、D,若點C的橫坐標為5,BE=3DE,則k的值為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC邊OA,OC分別在x軸,y的正半軸上,且OA=8,OC=6,連接AC,點D為AC中點,點E從點C出發(fā)以每秒1個單位長度運動到點O停止,設運動時間為t秒(0<t<6),連接DE,作DF⊥DE交OA于點F,連接EF.
(1)當t的值為 時,四邊形DEOF是矩形;
(2)用含t的代數式表示線段OF的長度,并說明理由;
(3)當△OEF面積為時,請直接寫出直線DE的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下圖1是兒童寫字支架示意圖,由一面黑板,一面白板和一塊固定支架的托盤組成,圖2是它的一個左側截面圖,該支架是個軸對稱圖形,∠BAC是可以轉動的角,B,C、D,E和F,G是支架腰上的三對對稱點,是用來卡住托盤以固定支架的。已知AB=AC=60cm,BD=CE=DF=EG=10cm。
(1)當托盤固定在BC處時,∠BAC=32,求托盤BC的長;(精確到0.1)
(2)當托盤固定在DE處時,這是兒童看支架的最佳角度,求此時∠BAC的度數。
(參考數據:sin32=0.53,cos32=0.85,sin16=0.28
sin20=0.34,sin25=0.42。)
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A與點B關于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數()的圖象經過點A,E.若△ACE的面積為6,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系內,點A,B的坐標分別為(1,0),(0,2),AC⊥AB,且AB=AC,直線BC交軸于點D,拋物線經過點A,B,D.
(1)求直線BC和拋物線的函數表達式;
(2)點P是直線BD下方的拋物線上一點,求△PCD面積的最大值,以及△PCD面積取得最大值時,點P的坐標;
(3)若點P的坐標為(2)小題中,△PCD的面積取得最大值時對應的坐標.平面內存在直線l,使點B,D,P到該直線的距離都相等,請直接寫出所有滿足條件的直線l的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次數學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉盤做游戲(每個轉盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內標上數字).游戲規(guī)則如下:兩人分別同時轉動甲、乙轉盤,轉盤停止后,若指針所指區(qū)域內兩數和小于12,則李燕獲勝;若指針所指區(qū)域內兩數和等于12,則為平局;若指針所指區(qū)域內兩數和大于12,則劉凱獲勝(若指針停在等分線上,重轉一次,直到指針指向某一份內為止).
(1)請用列表的方法表示出上述游戲中兩數和的所有可能的結果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com