【題目】如圖,在正方形ABCD中,點E是BC的中點,連接DE,過點A作AG⊥ED交DE于點F,交CD于點G.
(1)證明:△ADG≌△DCE;(2)連接BF,證明:AB=FB.
【答案】(1)見解析;(2)見解析.
【解析】
(1)依據正方形的性質以及垂線的定義,即可得到∠ADG=∠C=90°,AD=DC,∠DAG=∠CDE,即可得出△ADG≌△DCE;
(2)延長DE交AB的延長線于H,根據△DCE≌△HBE,即可得出B是AH的中點,進而得到AB=FB.
解:(1)∵四邊形ABCD是正方形,
∴∠ADG=∠C=90°,AD=DC,
又∵AG⊥DE,
∴∠DAG+∠ADF=90°=∠CDE+∠ADF,
∴∠DAG=∠CDE,
∴△ADG≌△DCE(ASA);
(2)如圖所示,延長DE交AB的延長線于H,
∵E是BC的中點,
∴BE=CE,
又∵∠C=∠HBE=90°,∠DEC=∠HEB,
∴△DCE≌△HBE(ASA),
∴BH=DC=AB,
即B是AH的中點,
又∵∠AFH=90°,
∴Rt△AFH中,BF= AH=AB.
科目:初中數學 來源: 題型:
【題目】某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)當銷售單價為70元時,每天的銷售利潤是多少?
(2)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數關系式,并求出自變量的取值范圍;
(3)如果該企業(yè)每天的總成本不超過7000元,那么銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司生產的某種時令商品每件成本為20元,經過市場調研發(fā)現,這種商品在未來40天內的日銷售量件與時間天的關系如下表:
時間天 | 1 | 3 | 5 | 10 | 36 | |
日銷售量件 | 94 | 90 | 86 | 76 | 24 |
已知未來40天內,前20天該商品每天的價格元件與時間t的函數關系式為(,且t為整數),后20天該商品每天的價格元件與時間t的函數關系式為(,且t為整數).
求m與t之間的函數關系式;
未來40天內,后20天中哪一天的日銷售利潤最大最大日銷售利潤是多少.
在實際銷售的前20天中,該公司決定每銷售一件商品,就捐贈元給希望工程公司查閱銷售記錄發(fā)現,前20天中,扣除捐贈后的日銷售利潤隨時間t的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:四邊形AGBD為平行四邊形;
(2)若四邊形AGBD是矩形,則四邊形BEDF是什么特殊四邊形?證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x+1與x軸,y軸分別交于點A和點B,直線l2:y=kx(k≠0)與直線l1在第一象限交于點C.若∠BOC=∠BCO,則k的值為( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(3,2)在反比例函數y=(x>0)的圖象上,點B在OA的延長線上,BC⊥x軸,垂足為C,BC與反比例函數的圖象相交于點D,連接AC,AD.
(1)求該反比例函數的解析式;
(2)若S△ACD=,設點C的坐標為(a,0),
①求點D的坐標;
②求線段BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A是反比例函數y=圖象在第一象限上的一點,連結AO并延長交圖象的另一分支于點B,延長BA至點C,過點C作CD⊥x軸,垂足為D,交反比例函數圖象于點E.若,△BDC的面積為6,則k=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC,△EFG均是邊長為2的等邊三角形,點D是邊BC、EF的中點,直線AG、FC相交于點M.當△EFG繞點D旋轉時,線段BM長的最小值是( )
A.2-B.+1C.D.-1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綠色生態(tài)農場生產并銷售某種有機產品,假設生產出的產品能全部售出.如圖,線段EF、折線ABCD分別表示該有機產品每千克的銷售價y1(元)、生產成本y2(元)與產量x(kg)之間的函數關系.
(1)求該產品銷售價y1(元)與產量x(kg)之間的函數關系式;
(2)直接寫出生產成本y2(元)與產量x(kg)之間的函數關系式;
(3)當產量為多少時,這種產品獲得的利潤最大?最大利潤為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com