【題目】如圖,A、F、B、C是半圓O上的四個點,四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點E,過點C作CD∥OF交AB的延長線于點D,延長AF交直線CD于點H.
(1)求證:CD是半圓O的切線;
(2)若DH=,求EF的長和半徑OA的長.
【答案】(1)證明過程見解析;(2)EF=2-;OA=2.
【解析】試題分析:(1)連接OB,根據(jù)已知條件得到△AOB是等邊三角形,得到∠AOB=60°,根據(jù)圓周角定理得到∠AOF=∠BOF=30°,根據(jù)平行線的性質(zhì)得到OC⊥CD,由切線的判定定理即可得到結(jié)論;(2)根據(jù)平行線的性質(zhì)得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根據(jù)相似三角形的性質(zhì)得到,求得EF=2﹣,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論.
試題解析:(1)連接OB, ∵OA=OB=OC, ∵四邊形OABC是平行四邊形, ∴AB=OC,
∴△AOB是等邊三角形, ∴∠AOB=60°, ∵∠FAD=15°, ∴∠BOF=30°, ∴∠AOF=∠BOF=30°,
∴OF⊥AB, ∵CD∥OF, ∴CD⊥AD, ∵AD∥OC, ∴OC⊥CD, ∴CD是半圓O的切線;
(2)∵BC∥OA, ∴∠DBC=∠EAO=60°, ∴BD=BC=AB, ∴AE=AD, ∵EF∥DH,∴△AEF∽△ADH,
∴, ∵DH=6﹣3, ∴EF=2﹣, ∵OF=OA, ∴OE=OA﹣(2﹣),
∵∠AOE=30°, ∴==, 解得:OA=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=90°,OM是∠AOB的平分線,點D是邊OB上一定點,將三角板的直角頂點P在射線OM上移動,使一直角邊經(jīng)過點D,另一直角與邊OA交于點C.容易證得PC=PD(如圖①)
(1)若另一直角邊與邊OA的反向延長線相交于點C(如圖②),試問PC與PD還會相等嗎?若相等,請予以證明;若不相等,請說明理由;
(2)已知OD=4,三角板在移動過程中,另一直角邊與直線OA,直線OB分別交于點C,E,且以P,D,E為頂點的三角形與OCD相似,試求線段OP的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N分別為BC、CD的中點,AM=1,AN=2,∠MAN=60°則AB的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸, 軸分別交于點A、B,拋物線經(jīng)過點A和點B,與x軸的另一個交點為C,動點D從點A出發(fā),以每秒1個單位長度的速度向O點運動,同時動點E從點B出發(fā),以每秒2個單位長度的速度向A點運動,設(shè)運動的時間為t秒,0﹤t﹤5.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時,以A、D、E為頂點的三角形與△AOB相似;
(3)當(dāng)△ADE為等腰三角形時,求t的值;
(4)拋物線上是否存在一點F,使得以A、B、D、F為頂點的四邊形是平行四邊形?若存在,直接寫出F點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了增強學(xué)生體質(zhì),全面實施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進(jìn)行了隨機調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:
(1)本次被調(diào)查的學(xué)生有 名;
(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將二次函數(shù)y=x2的圖象向左平移1個單位,則平移后的二次函數(shù)的解析式為( 。
A.y=x2﹣1B.y=x2+1C.y=(x﹣1)2D.y=(x+1)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com