(2002•荊州)如圖,在梯形ABCD中,AD∥BC,∠ADB=∠CDE,DE⊥BC于D,且BD:DE=2:1,則△BDE的面積與△DEC的面積比為( )

A.2:1
B.5:2
C.3:1
D.4:1
【答案】分析:根據(jù)相似三角形的判定定理及性質(zhì)解答即可.
解答:解:∵AD∥BC,
∴△BDE∽△DEC,
∴∠ADB=∠DBE,
又∵∠ADB=∠CDE,DE⊥BC,
∵BD:DE=2:1,∴BE:DE=:1,
∴△BDE和△DEC的相似比是:1,面積的比是3:1.
故選C.
點(diǎn)評(píng):此題比較簡(jiǎn)單,考查相似三角形的性質(zhì).利用相似三角形的性質(zhì)時(shí),要注意相似比的順序,同時(shí)也不能忽視面積比與相似比的關(guān)系.相似比是聯(lián)系周長(zhǎng)、面積、對(duì)應(yīng)線段等的媒介,也是相似三角形計(jì)算中常用的一個(gè)比值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•荊州)如圖,一次函數(shù)的圖象與x軸、y軸交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等邊△ABC,
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點(diǎn)P(a,);試用含有a的代數(shù)式表示四邊形ABPO的面積,并求出當(dāng)△ABP的面積與△ABC的面積相等時(shí)a的值;
(3)在x軸上,是否存在點(diǎn)M,使△MAB為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•荊州)如圖,一次函數(shù)的圖象與x軸、y軸交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等邊△ABC,
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點(diǎn)P(a,);試用含有a的代數(shù)式表示四邊形ABPO的面積,并求出當(dāng)△ABP的面積與△ABC的面積相等時(shí)a的值;
(3)在x軸上,是否存在點(diǎn)M,使△MAB為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年九年級(jí)(下)第一次階段性測(cè)試數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•荊州)如圖點(diǎn)P為弦AB上一點(diǎn),連接OP,過P作PC⊥OP,PC交⊙O于點(diǎn)C,若AP=4,PB=2,則PC的長(zhǎng)為( )

A.
B.2
C.
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•荊州)如圖,在梯形ABCD中,AD∥BC,∠ADB=∠CDE,DE⊥BC于D,且BD:DE=2:1,則△BDE的面積與△DEC的面積比為( )

A.2:1
B.5:2
C.3:1
D.4:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•荊州)如圖,Rt△ABC中,∠C=90°,D為BC上一點(diǎn),∠DAC=30°,BD=2,AB=,則AC的長(zhǎng)是( )

A.
B.
C.3
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案