【題目】如圖1,四邊形ACDE是美國(guó)第二十任總統(tǒng)伽菲爾德驗(yàn)證勾股定理時(shí)用到的一個(gè)圖形,ab,cRtABCRtBED邊長(zhǎng),易知AE=,這時(shí)我們把關(guān)于x的形如的一元二次方程稱(chēng)為“勾系一元二次方程”.

請(qǐng)解決下列問(wèn)題:

1)判斷方程是否是 “勾系一元二次方程”;并說(shuō)明理由.

2)求證:關(guān)于的“勾系一元二次方程” 必有實(shí)數(shù)根;

3)如圖2,已知AB、CD是半徑為5O的兩條平行弦,AB=2a,CD=2bab,關(guān)于x的方程是“勾系一元二次方程”,求BAC的度數(shù)

【答案】1)是,理由詳見(jiàn)解析;(2)詳見(jiàn)解析;(345°

【解析】

1)根據(jù)“勾系一元二次方程”的定義即可判斷;

2)利用勾股定理以及“勾系一元二次方程”的定義即可解決問(wèn)題;

3)如圖2中,連接OCOB,作OECDE,作EO的延長(zhǎng)線(xiàn)交ABF,利用全等三角形的性質(zhì)推導(dǎo)出∠COB=90°即可解決問(wèn)題.

1 “勾系一元二次方程”,理由如下:

中,

,能構(gòu)成直角三角形

∴方程是“勾系一元二次方程”

2)∵關(guān)于的方程是“勾系一元二次方程”

構(gòu)成直角三角形,c是斜邊

∴關(guān)于的“勾系一元二次方程”必有實(shí)數(shù)根.

3)在圖2中,連接OC,OB,作OECDE,作EO的延長(zhǎng)線(xiàn)交ABF,如下圖:

∵關(guān)于x的方程是“勾系一元二次方程”

,5構(gòu)成直角三角形,5是斜邊

AB//CDOECD

OFAB

∴∠OEC=OFB= 90°

AB=2a,CD=2b

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解,是正整數(shù)且),在的所有這種分解中,如果,兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)的最佳分解,并規(guī)定:,例如可以分解成.因?yàn)?/span>,所有是最佳分解,所以

1)求

2)如果一個(gè)兩位正整數(shù),、為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為,那么我們稱(chēng)這個(gè)數(shù)為 “吉祥數(shù)”,求所有“吉祥數(shù)”中的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示的兩條拋物線(xiàn)的解析式分別是y1=-ax2ax1y2ax2ax1(其中a為常數(shù),且a0)

1)請(qǐng)寫(xiě)出三條與上述拋物線(xiàn)有關(guān)的不同類(lèi)型的結(jié)論;

2)當(dāng)a時(shí),設(shè)y1=-ax2ax1x軸分別交于M,N兩點(diǎn)(MN的左邊),y2ax2ax1x軸分別交于E,F兩點(diǎn)(EF的左邊),觀(guān)察MN,EF四點(diǎn)坐標(biāo),請(qǐng)寫(xiě)出一個(gè)你所得到的正確結(jié)論,并說(shuō)明理由;

3)設(shè)上述兩條拋物線(xiàn)相交于A,B兩點(diǎn),直線(xiàn)l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過(guò)AB兩點(diǎn),l在直線(xiàn)l1,l2之間,且l與兩條拋物線(xiàn)分別交于C,D兩點(diǎn),求線(xiàn)段CD的最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在⊙O中,BC=2,AB=AC,點(diǎn)DAC上的動(dòng)點(diǎn),且cosB=

1)求AB的長(zhǎng)度;

2)求ADAE的值;

3)過(guò)A點(diǎn)作AHBD,求證:BH=CD+DH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,∠BAD=90°,AD、BC的延長(zhǎng)線(xiàn)交于點(diǎn)F,點(diǎn)ECF上,且∠DEC=BAC

1)求證:DEO的切線(xiàn);

2)若AB=AC,CE=10,EF=14,求CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,菱形ABCD中,AB=5,∠ABC=60°,∠EAF=60°,∠EAF的兩邊分別交BCCDE、F

1)如圖1所示,當(dāng)點(diǎn)EF分別在邊BCCD上時(shí),求CE+CF的值;

2)如圖2所示,當(dāng)點(diǎn)、分別在、的延長(zhǎng)線(xiàn)時(shí),請(qǐng)從兩題中任選一題作答,我選______題.

題:則的值是________

題:則的關(guān)系是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為表彰在了不起我的國(guó)演講比賽中獲獎(jiǎng)的選手,決定購(gòu)買(mǎi)甲、乙兩種圖書(shū)作為獎(jiǎng)品.已知購(gòu)買(mǎi)30本甲種圖書(shū),50本乙種圖書(shū)共需1350元;購(gòu)買(mǎi)50本甲種圖書(shū),30本乙種圖書(shū)共需1450元.

1)求甲、乙兩種圖書(shū)的單價(jià)分別是多少元?

2)學(xué)校要求購(gòu)買(mǎi)甲、乙兩種圖書(shū)共40本,且甲種圖書(shū)的數(shù)量不少于乙種圖書(shū)數(shù)量的,請(qǐng)?jiān)O(shè)計(jì)最省錢(qián)的購(gòu)書(shū)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高飲水質(zhì)量,越來(lái)越多的居民選擇家用凈水器,光明商場(chǎng)計(jì)劃從生產(chǎn)廠(chǎng)家購(gòu)進(jìn)甲、乙兩種型號(hào)的家用凈水器,甲型號(hào)凈水器進(jìn)價(jià)為160/臺(tái),乙型號(hào)凈水器進(jìn)價(jià)為280/臺(tái),經(jīng)過(guò)協(xié)商溝通,生產(chǎn)廠(chǎng)家拿出了兩種優(yōu)惠方案:第一種優(yōu)惠方案:甲、乙兩種型號(hào)凈水器均按進(jìn)價(jià)的8折收費(fèi);第二種優(yōu)惠方案:甲型號(hào)凈水器按原價(jià)收費(fèi),乙型號(hào)凈水器的進(jìn)貨量超過(guò)10臺(tái)后超過(guò)的部分按進(jìn)價(jià)的6折收費(fèi).

光明商場(chǎng)只能選擇一種優(yōu)惠方案,已知光明商場(chǎng)計(jì)劃購(gòu)進(jìn)甲型號(hào)凈水器數(shù)量是乙型號(hào)凈水器數(shù)量的1.5倍,設(shè)光明商場(chǎng)購(gòu)進(jìn)乙型號(hào)凈水器臺(tái),選擇第一種優(yōu)惠方案所需費(fèi)用為片元,選擇第二種優(yōu)惠方案所需費(fèi)用為元.

1)分別求出、的關(guān)系式:

2)光明商場(chǎng)計(jì)劃購(gòu)進(jìn)乙型號(hào)凈水器40臺(tái),請(qǐng)你為光明商場(chǎng)選擇合適的優(yōu)惠方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對(duì)角線(xiàn)BD上.

1)求證:BG=DE

2)若EAD中點(diǎn),FH=2,求菱形ABCD的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案