【題目】今年史上最長(zhǎng)的寒假結(jié)束后,學(xué)生復(fù)學(xué),某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),鼓勵(lì)學(xué)生在不聚集的情況下加強(qiáng)體育鍛煉,決定讓各班購(gòu)買跳繩和毽子作為活動(dòng)器材.已知購(gòu)買根跳繩和個(gè)毽子共需元;購(gòu)買根跳繩和個(gè)毽子共需元.

1)求購(gòu)買一根跳繩和一個(gè)毽子分別需要多少元;

2)某班需要購(gòu)買跳繩和毽子的總數(shù)量是,且購(gòu)買的總費(fèi)用不能超過元;若要求購(gòu)買跳繩的數(shù)量多于根,通過計(jì)算說明共有哪幾種購(gòu)買跳繩的方案.

【答案】1)購(gòu)買一根跳繩需要6元,一個(gè)毽子需要4元;(2)方案一:購(gòu)買跳繩21根;方案二:購(gòu)買跳繩22

【解析】

1)設(shè)購(gòu)買一根跳繩需要x元,一個(gè)毽子需要y元,依題意列出二元一次方程組解之即可;

2)設(shè)學(xué)校購(gòu)進(jìn)跳繩m根,則購(gòu)進(jìn)毽子(54-m)根,根據(jù)題意列出不等式解之得m的范圍,進(jìn)而可判斷購(gòu)買方案.

1)設(shè)購(gòu)買一根跳繩需要x元,一個(gè)毽子需要y元,

依題意,得:,

解得:,

答:購(gòu)買一根跳繩需要6元,一個(gè)毽子需要4元;

2)設(shè)學(xué)校購(gòu)進(jìn)跳繩m根,則購(gòu)進(jìn)毽子(54-m)根,

根據(jù)題意,得:,

解得:m22,

m20,且m為整數(shù),

m=2122,

∴共有兩種購(gòu)買跳繩的方案,方案一:購(gòu)買跳繩21根;方案二:購(gòu)買跳繩22根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中, AB=3,BC=4,將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),點(diǎn)A、BD的對(duì)應(yīng)點(diǎn)分別為A’ 、B’、 D’,當(dāng)A’ 落在邊CD的延長(zhǎng)線上時(shí),邊A’ D’ 與邊 AD的延長(zhǎng)線交于點(diǎn)F,聯(lián)結(jié)CF,那么線段CF的長(zhǎng)度為____


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某新建小區(qū)要修一條1050米長(zhǎng)的路,甲、乙兩個(gè)工程隊(duì)想承建這項(xiàng)工程.經(jīng)

了解得到以下信息(如表):

工程隊(duì)

每天修路的長(zhǎng)度(米)

單獨(dú)完成所需天數(shù)(天)

每天所需費(fèi)用(元)

甲隊(duì)

30

n

600

乙隊(duì)

m

n﹣14

1160

(1)甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)n=  ,乙隊(duì)每天修路的長(zhǎng)度m=  (米);

(2)甲隊(duì)先修了x米之后,甲、乙兩隊(duì)一起修路,又用了y天完成這項(xiàng)工程(其中x,y為正整數(shù)).

①當(dāng)x=90時(shí),求出乙隊(duì)修路的天數(shù);

②求yx之間的函數(shù)關(guān)系式(不用寫出x的取值范圍);

③若總費(fèi)用不超過22800元,求甲隊(duì)至少先修了多少米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊長(zhǎng)5米寬4米的地毯,為了美觀設(shè)計(jì)了兩橫、兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個(gè)地毯面積的

(1)求配色條紋的寬度;

(2)如果地毯配色條紋部分每平方米造價(jià)200元,其余部分每平方米造價(jià)100元,求地毯的總造價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果順次連接四邊形的各邊中點(diǎn)得到的四邊形是矩形,那么原來四邊形的對(duì)角線一定滿足的條件是(

A.互相平分B.相等C.互相垂直D.互相垂直平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知點(diǎn)A為x軸上的一動(dòng)點(diǎn),其坐標(biāo)為(m,0)點(diǎn)B的坐標(biāo)為(,0),在x軸上方取點(diǎn)C,使CBx軸,且CB=2AO,點(diǎn)C,關(guān)于直線對(duì)稱,交直線于點(diǎn)E若△BOE的面積為4,則點(diǎn)E的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,足球場(chǎng)上守門員在O處開出一高球,球從離地面1米的A處飛出(Ay軸上),運(yùn)動(dòng)員乙在距O點(diǎn)6米的B處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點(diǎn)M,距地面約4米高,球落地后又一次彈起,據(jù)試驗(yàn)測(cè)算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.

1)求足球開始飛出到第一次落地時(shí),該拋物線的表達(dá)式;

2)足球第一次落地點(diǎn)C距守門員多少米?(取

3)運(yùn)動(dòng)員乙要搶到足球第二個(gè)落點(diǎn)D,他應(yīng)再向前跑多少米?(取

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一組數(shù)據(jù):3,1,2,4,25,4去掉3后,新的數(shù)據(jù)的特征量發(fā)生變化的是( )

A.中位數(shù)B.平均數(shù)C.眾數(shù)D.方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有兩個(gè)相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個(gè)角的夾邊稱為鄰余線.

1)如圖1,在ABC中,AB=ACADABC的角平分線,EF分別是BD,AD上的點(diǎn).求證:四邊形ABEF是鄰余四邊形.

2)如圖2,在5×4的方格紙中,A,B在格點(diǎn)上,請(qǐng)畫出一個(gè)符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點(diǎn)上.

3)如圖3,在(1)的條件下,取EF中點(diǎn)M,連結(jié)DM并延長(zhǎng)交AB于點(diǎn)Q,延長(zhǎng)EFAC于點(diǎn)N.若NAC的中點(diǎn),DE=2BE,QB=6,求鄰余線AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案