如圖正方形OABC的面積為4,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在函數(shù),)的圖象上,點(diǎn)是函數(shù)的圖象上異于B的任意一點(diǎn),過點(diǎn)P分別作x軸,y軸的垂線,垂足分別為E,F(xiàn).
(1)設(shè)矩形OEPF的面積為S1,判斷S1與點(diǎn)P的位置是否有關(guān)(不必說理由).
(2)從矩形OEPF的面積中減去其與正方形OABC重合的面積,剩余面積記為S2,寫出S2與m的函數(shù)關(guān)系,并標(biāo)明m的取值范圍.
(1)沒有關(guān)系;
(2)正方形OABC的面積為4 
           
       把代入中 
            解析式為
       的圖象上, 
       
       ①當(dāng)P在B點(diǎn)上方時 
         
      ②當(dāng)P在B點(diǎn)下方時, 
         
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖(1),在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE、BE、GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運(yùn)用(1)中解答所積累的經(jīng)驗(yàn)和知識,完成下面兩題:
①如圖(2),在四邊形ABCD中∠B=∠D=90°,BC=CD,點(diǎn)E,點(diǎn)G分別是AB邊,AD邊上的動點(diǎn).若∠BCD=α°,∠ECG=β°,試探索當(dāng)α和β滿足什么關(guān)系時,圖(1)中GE、BE、GD三線段之間的關(guān)系仍然成立,并說明理由.
②在平面直角坐標(biāo)中,邊長為1的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖(3)).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:正方形OABC的邊OC、OA分別在x、y軸的正半軸上,設(shè)點(diǎn)B(4,4),點(diǎn)P(t,0)是x軸上一動點(diǎn),過點(diǎn)O作OH⊥AP于點(diǎn)H,直線OH交直線BC于點(diǎn)D,連AD.
(1)如圖1,當(dāng)點(diǎn)P在線段OC上時,求證:OP=CD;
(2)在點(diǎn)P運(yùn)動過程中,△AOP與以A、B、D為頂點(diǎn)的三角形相似時,求t的值;
(3)如圖2,拋物線y=-
1
6
x2+
2
3
x+4上是否存在點(diǎn)Q,使得以P、D、Q、C為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),正方形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(2,2),反比例函數(shù)y=
kx
(x>0,k≠0)的圖象經(jīng)過線段BC的中點(diǎn)D.
(1)求k的值;
(2)若點(diǎn)P(x,y)在該反比例函數(shù)的圖象上運(yùn)動(不與點(diǎn)D重合),過點(diǎn)P作PR⊥y軸于點(diǎn)R,作PQ⊥BC所在直線于點(diǎn)Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:四川省德陽市2012年中考數(shù)學(xué)試題 題型:044

在平面直角坐標(biāo)xOy中,(如圖)正方形OABC的邊長為4,邊OA在x軸的正半軸上,邊OC在y軸的正半軸上,點(diǎn)D是OC的中點(diǎn),BEDB交x軸于點(diǎn)E.

(1)求經(jīng)過點(diǎn)D、B、E的拋物線的解析式;

(2)將DBE繞點(diǎn)B旋轉(zhuǎn)一定的角度后,邊BE交線段OA于點(diǎn)F,邊BD交y軸于點(diǎn)G,交(1)中的拋物線于M(不與點(diǎn)B重合),如果點(diǎn)M的橫坐標(biāo)為,那么結(jié)論OF=DG能成立嗎?請說明理由;

(3)過(2)中的點(diǎn)F的直線交射線CB于點(diǎn)P,交(1)中的拋物線在第一象限的部分于點(diǎn)Q,且使PFE為等腰三角形,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案